- 探索数据的奥秘:一份深入浅出的数据分析入门指南
uncle_ll
数据库数据分析数据挖掘入门
数据分析书籍推荐入门读物深入浅出数据分析啤酒与尿布数据之美数学之美数据分析ScipyandNumpyPythonforDataAnalysisBadDataHandbook集体智慧编程MachineLearninginAction机器学习实战BuildingMachineLearningSystemswithPython数据挖掘导论MachineLearningforHackers专业读物Intr
- 一个月读完6本书?这些烧脑神书,你能读完1本,就是学霸!
大数据v
导读:宅家有刷不完的剧、打不完的游戏?在线听课又走神了?一觉醒来假期又延长了?但假期虽漫长,终究有开学的那天。那么应该为迟来的开学做哪些准备?停课不停学!近日,著名经济学者薛兆丰在得到app上发起“一个月读完6本书”的挑战。但数据叔今天推荐的这些书,一个月读完6本真的有难度。只要读完1本,你这个月就没有虚度,一定收获满满;只要读完1本,你就打败了全国99%的宅家小伙伴!1数据挖掘导论(原书第2版)
- 《数据挖掘导论》学习 | 第九章 聚类分析:其他问题与算法
蕴玉山辉,怀珠川媚
数据挖掘导论数据科学数据挖掘
目录第九章聚类分析:其他问题与算法数据、簇和聚类算法的特性比较K均值和DBSCAN数据特性簇特性聚类算法的一般特性基于原型的聚类模糊聚类使用混合模型的聚类自组织映射基于密度的聚类基于网格的聚类子空间聚类基于图的聚类稀疏化最小生成树聚类OPOSSUM:使用METIS的稀疏相似度最优划分Chameleon:使用动态建模的层次聚类共享最近邻相似度Jarvis-Patrick聚类算法SNN密度可伸缩的聚类
- 数据挖掘导论 第4章 分类:基本概念、决策树与模型评估
??yy
数据结构与算法人工智能
第4章分类:基本概念、决策树与模型评估分类(classification):分类任务就是通过学习得到一个目标函数(targetfunction)f,把每个属性集x映射到一个余弦定义的类标号y。目标函数也称为分类模型(classificationmodel)。属性可以是离散的或者连续的,但类标号必须是离散的,这正是分类与回归(regression)的关键特征。回归是一种预测建模任务,其中目标属性y是
- 数据挖掘导论课后习题答案-第一章
洋子_
数据挖掘数据挖掘数据库人工智能数据挖掘导论数据挖掘导论习题
IntroductionDiscusswhetherornoteachofthefollowingactivitiesisadataminingtask.(a)Dividingthecustomersofacompanyaccordingtotheirgender.No.Thisisasimpledatabasequery.(b)Dividingthecustomersofacompanyacco
- 数据挖掘导论学习笔记(四)
进阶中的程序猿
数据挖掘导论基础知识数据挖掘
第五章分类:其他技术基于规则的分类器:每一个分类规则可以表示为如下形式:ri:(条件i)---->yi规则:(条件i)规则前件或前提:规则左边规则后件:规则右边,包含预测类yi分类规则的质量衡量:给定数据集D和分类规则r:A---->y(1)覆盖率:D中触发规则r的记录所占比例(2)准群率或置信因子:触发r的记录中类标号等于y的记录所占比例。基于规则的分类器的工作原理:确保分类器能对记录做出可靠的
- 《数据挖掘导论》学习笔记:第1-2章
bakalaka
数据挖掘理论
本文转载自:https://blog.csdn.net/u013232035/article/details/48281659本文主要是在学习《数据挖掘导论(完整版)》中的学习笔记,主要用来梳理思路,并没有多少思考。第1章绪论1.1什么是数据挖掘KDD:KnowledgeDiscoveryinDatabase过程如下:CreatedwithRaphaël2.1.0输入数据数据预处理数据挖掘后处理信
- 《数据挖掘导论》归纳笔记
oh panda
数据挖掘笔记人工智能
目录第一章绪论第二章数据2.0引言2.0.1数据类型2.0.2数据的质量2.0.3使数据适合挖掘的预处理步骤2.0.4根据数据联系分析数据2.1数据类型2.1.1属性与度量2.1.2数据集的类型2.2数据质量2.2.1测量和数据收集问题2.2.2关于应用的问题2.3数据预处理2.3.1聚集2.3.2抽样2.3.3维归约2.3.4特征子集选择2.3.5特征创建2.3.6离散化和二元化2.3.7变量变
- 《数据挖掘导论》学习笔记
小乖的晴天
数据挖掘
写在前面:粗体字为书中定义,红色字体为笔者认为的重点词。【第一章:绪论】1.数据挖掘:在大型数据存储库中,自动地发现有用信息的过程。2.数据预处理步骤:融合来自多个数据源的数据,清洗数据以及消除噪声和重复的观测值,选择与当前数据挖掘任务相关的记录和特征。3.数据挖掘要解决的问题:可伸缩,高维性,异种数据和复杂数据,数据的所有权和分布,非传统的分析。4.数据挖掘任务:预测任务,描述任务。四种主要数据
- 《数据挖掘导论》学习笔记(第1-2章)
schdut
数据挖掘默认数据挖掘数据挖掘导论
《数据挖掘导论》学习笔记(第1-2章)转载:《数据挖掘导论》学习笔记(第1-2章)——Wr_Ran第1章绪论1.1什么是数据挖掘KDD:KnowledgeDiscoveryinDatabase过程如下:1.输入数据2.数据预处理3.数据挖掘4.后处理5.得到信息其中,数据预处理包括如下几部分:特征选择维归约规范化选择数据子集后处理包括如下及部分:模式过滤可视化模式表达1.2数据挖掘要解决的问题可伸
- 数据挖掘导论学习笔记 第六章 关联分析:基本概念和算法
李烟云
数据挖掘算法fp树结构
6.1问题定义关联分析(associationanalysis)用于发现隐藏在大型数据集中有意义的联系,所发现的联系可以用关联规则或者频繁项集的形式表示项集和支持度计数以购物篮数据集为例TID面包牛奶尿布…1110…2101……5111…令I={i1,i2,…,id}I=\{i_1,i_2,\ldots,i_d\}I={i1,i2,…,id}表示所有项的集合,T={t1,…,tN}T=\{t_1,
- 数据挖掘导论学习笔记1(第1 、2章)
蔬菜院院长
数据挖掘导论数据挖掘学习笔记
参考:https://blog.csdn.net/u013232035/article/details/48281659?spm=1001.2014.3001.5506和《数据挖掘导论》学习笔记(第1-2章)_时机性样本_schdut的博客-CSDN博客第1章绪论数据挖掘是一种技术,它将传统的数据分析方法与处理大量数据的复杂算法相结合。数据分析技术的应用:商务:借助POS(销售点)数据收集技术【条
- 数据挖掘导论 N个考试常用的问题
山野行者syh
数据挖掘kdd决策树神经网络
目录第一章认识数据挖掘1、什么是数据中“隐含”的信息2、数据挖掘主要研究什么内容?它和数据库、数据查询、专家系统、数理统计有什么不同?3、辨析:数据、信息、知识4、有指导和无指导学习的联系和区别是什么5、如何理解数据挖掘的不同角度的定义6、数据挖掘与专家系统的联系和区别是什么?7、数据挖掘工作的基本流程是什么?8、数据挖掘的作用作业1第二章基本数据挖掘技术1、决策树算法的关键技术2、选择最能区别数
- 数据挖掘导论——支持向量机
PolarBearWYY
明天就要讲课了,总觉得,还是拿代码说事儿,最靠谱,最有说服力https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html经常用到sklearn中的SVC函数,这里把文档中的参数翻译了一些,以备不时之需。本身这个函数也是基于libsvm实现的,所以在参数设置上有很多相似的地方。(PS:libsvm中的二次规划问题的解决算
- 推荐算法-协同过滤1 概述
limus
协同过滤用户一起和网站互动,使得自己的推荐列表不断过滤掉不感兴趣的物品,从而越来越满足自己的要求。用户行为用户行为举例当当网浏览“”数据挖掘导论“,推荐“还买过”web数据挖掘用户行为的提取从日志中挖掘会话日志->记录查询+返回结果+点击。评分系统:视频的喜欢/不喜欢和豆瓣评论的5级用户行为的存储hadoopHive,Googledremel,hadoopdrill用户行为的特点用户越活跃,越倾向
- 《数据挖掘导论》CH4分类:基本概念、决策树与模型评估-读书笔记
Schnell
分类任务就是确定对象属于哪个预定义的目标类(店铺病历表,款式判断)4.1预备知识分类计数非常适合预测或描述二元或标称类型的数据集,但是分类技术不考虑隐含的序数关系。4.2解决分类问题的一般方法(方法论)P91(图4-3)分类技术是一种根据输入数据集建立分类模型的系统方法。分类法包括:决策树分类法,基于规则的分类法,神经网络,支持向量机和朴素贝叶斯分类法。分类模型能够很好的拟合输入数据中类标号和属性
- 在数据分析、挖掘方面,有哪些好书值得推荐?
python大数据分析
最近看到有人在问,在数据分析、挖掘方面,有哪些好书值得推荐?推荐三本书,分别是统计、编程、算法方向的核心教程,非常适合新手去看。StatisticsforBusinessandEconomics-商务与经济统计PythonforDataAnalysis-利用Python进行数据分析IntroductiontoDataMining-数据挖掘导论如果你是学R的,可以再加一本R语言实战为什么选这三本书呢
- 《数据挖掘导论》CH3探索数据-读书笔记
Schnell
3.2数据汇总频率,众数,百分位数,位置度量(均值和中位数),散布度量(极差和方差),多元汇总统计(相关矩阵)3.3可视化3.4OLAP和多维数据分析创建按月和按产品类别描述特定地点的销售活动汇总3.4.2多维数据:一般情况3.4.3分析多维数据1.数据立方体:计算聚集量从多维角度看待数据的主要动机就是需要以多种方式聚集数据2.维归约和转轴聚集可以认为是一种降维-转轴-切片和切块-****上卷和下
- 《数据挖掘导论》CH5.3贝叶斯分类器
Schnell
背景:属性集和类变量之间的关系是不确定的,其一,噪声数据的干扰;其二,出现某些影响分类的因素没有包含在属性集中。因此,出现一种对属性集和类变量的概率关系建模的方法。贝叶斯定理是把类的先验知识和从数据中收集的新证据相结合的统计原理。它可以通过先验概率、类条件概率和证据来表示后验概率。(5-11)对于类条件概率的估算有两种方法:5.3.3朴素贝叶斯分类器1.前提:条件独立性:属性集的属性(条件)与类之
- 数据挖掘导论 笔记3
ccyyawsl
笔记数据挖掘
给定一个无序的、分类的值的集合,为了进一步刻画值的性质,除计算特定数据集中每个值出现的频率外没有多少的事情可做。给定一个在{1,…Vi,…Vk}.上取值的分类属性x和m个对象的集合,值vi的频率定义为:分类属性的众数(mode)是具有最高频率的值。百分位数对于有序数据,考虑值集的百分位数(percentile)更有意义。具体地说,给定-一个有序的或连续的属性x和0与100之间的数p,第p个百分位数
- hash tree在apriori算法中如何进行支持度计数 数据挖掘导论(完整版)第六章
schdut
默认数据挖掘数据挖掘hashtree
好几天没写博客了,把之前在知乎上的一个回答搬了过来。题目链接:hashtree在apriori算法中是如何进行支持度计数?我的回答如下:基本上看懂了,所以来答一发。我认为这本书写得很好,数据挖掘入门首选。P211中图6-9就是用Hash方法枚举事务t={1,2,3,5,6}的3-项集,这个图应该很好理解。P212中图6-11其实是作者举的一个例子:此图为一个Hash树,树中结点为候选项集,树中结点
- 推荐算法--基于物品的协同过滤算法
千寻~
机器学习推荐算法基于物品的协同过滤算法
“无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。”ItemCF:ItemCollaborationFilter,基于物品的协同过滤算法核心思想:给用户推荐那些和他们之前喜欢的物品相似的物品。比如,用户A之前买过《数据挖掘导论》,该算法会根据此行为给你推荐《机器学习》,但是Ite
- 《数据挖掘导论》CH5.1基于规则的分类器-读书笔记(2)
Schnell
5.1基于规则的分类器形式:规则-预测类if-then(和决策树区别,决策树规则有总分,规则分类是平行的,但是它俩可以转换)5.1.1原理:1.互斥规则:一条记录不能出现多个预测类,避免多个类出现的方法有:有序规则(规则按优先降序排列)和无序规则(产生多个预测类,进行加权计票)2.穷举规则:每天记录都应有预测类,不行就整一个其他类5.1.2规则的排序方案:1.基于规则排序:秩越前,越容易被解释,秩
- 【某航】k-means聚类t-sne可视化——数据挖掘导论
农夫小田
课程学习聚类机器学习数据分析python
代码链接:github代码1.任务要求分析Clustering_ALS数据集,对疾病类型进行聚类分析。2.读取数据:ALS.csv2223rows×101columns3.数据分析与可视化(1)数值型数据分布统计:(data_distribute.png)对每一列数据绘制直方图(质量分布图),它是表示数据分布情况的一种主要工具。其中y轴是密度,而不是概率。通过对每一类列数据做数据分布的统计,可以看
- 学习笔记(01):以性别预测为例,谈谈数据挖掘中常见的分类算法-数据挖掘的基本流程和常见的分类算法...
teth
研发管理数据挖掘深度学习大数据云计算/大数据
立即学习:https://edu.csdn.net/course/play/1948/30060?utm_source=blogtoedu一.数据挖掘基础数据挖掘:用各种方法(统计学、机器学习、爬虫)来解决各种实际问题;机器学习:算法层面数据挖掘工程师:程序员入门:通俗;1.PCI(集体智慧编程)2.写个程序....(直接下载)3.数学之美(纸质版无拓展阅读)正统:1机器.数据挖掘导论2.数据挖掘
- 数据挖掘导论阅读笔记第一章:绪论
つ天然呆¹³¹⁴
数据挖掘
数据挖掘导论(完整版)阅读笔记--第一章了解数据挖掘一、什么是数据挖掘二、了解KDD三、数据挖掘要解决的问题(了解即可)四、数据挖掘任务了解数据挖掘一、什么是数据挖掘数据挖掘是在大型数据存储库中,自动地发现有用信息的过程。数据挖掘技术用来探查大型数据库,发现先前未知的有用模式。这部分的重点在于区别:数据挖掘技术和其他信息检索任务例如:根据可赢利性划分公司客户答案:这不是数据挖掘任务,这是一个会计计
- 【数据挖掘——第一章 绪论】
一天雪
【数据挖掘】Python数据挖掘python
本文所使用的书籍为《数据挖掘导论》第一章绪论数据挖掘是一种技术,它将传统的数据分析方法与处理大量数据的复杂算法相结合。1.1什么是数据挖掘数据挖掘是在大型数据存储库中,自动地发现有用信息的过程。下面是数据库中知识发现(KDD)过程:数据预处理的目的是将未加工的输入数据转换成适合分析的形式。数据预处理设计的步骤包括融合来自多个数据源的数据,清洗数据以消除噪声和重复的观测值,选择与当前数据挖掘任务相关
- 《数据挖掘导论》绪论
Joutlier
数据挖掘导论笔记数据挖掘python
数据挖掘概念数据挖掘是在大型数据存储库中,自动的发现有用信息的过程,是数据库中知识发现(KDD)的一部分。数据挖掘任务预测建模:训练一个模型,使目标变量预测值与实际值之间的误差达到最小。有两类预测建模任务:分类,用于预测离散的目标变量;回归,用于预测连续的目标变量。如,根据花的特征预测花的种类。关联分析:用来发现描述数据中强关联特征的模式。如,用来发现顾客经常同时购买的商品。聚类分析:旨在发现紧密
- 多元线性回归,岭回归,lasso回归(具体代码(包括调用库代码和手写代码实现)+一点点心得)
Rainy maple
多元线性回归岭回归lasso回归机器学习python
最近数据挖掘导论老师布置了一项作业,主要就是线性回归的实现,笔者之前听过吴恩达的线性回归的网课,但一直没有进行代码的实现,这次正好相对系统的整理一下,方便各位同学的学习,也希望能够对其进行优化,优化的点最后再说。笔者写这篇博客也为了给实验报告打底稿,各位小伙伴2021年9月30号提交报告的时候别跟我实验报告一样啊,打回的话苦的是自己人,到时候我直接一波举报,哈哈哈。不过,发表这篇文章笔者是真的希望
- zscore标准化步骤_z-score的标准化究竟怎么弄?
weixin_39713335
zscore标准化步骤
在学习「数据挖掘导论」的数据预处理时,里面谈到了变量变换,我联想到了在基因表达量分析时的常见操作,例如FPKM,TPM,CPM,log对数变换。比如说在文章里面会见到如下的描述ThesizefactorofeachcellwascomputedusingapoolingstrategyimplementedintheRfunctioncomputeSumFactors.Normalizedcoun
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">