矩阵的奇异值

几何意义:
对任意m×n阶距阵A做分解之后得到两个正交距阵U,V和一个广义对角阵(其中的对角元素就是奇异值),有了这样一个简单的描述后,对任意向量x, 对应的变换Ax就可以用A分解后的三个距阵来计算了。这样的话,对于v阵的任一个元素Vi,经过变换AVi就可以得到唯一的一个Uiσi,这样就有了大家都知道的几何意义:当A是方阵时,其奇异值的几何意义是:若X是n维单位球面上的一点,则Ax是一个n维椭球面上的点,其中椭球的n个半轴长正好是A的n个奇异值。简单地说,在二维情况下,A将单位圆变成了椭圆,A的两个奇异值是椭圆的长半轴和短半轴。
 
  
 
  
在MATLAB中的话!其目的应该是用来把线性方程组的系数距阵或推广距阵化为下三角型!
最终目的是求解线性方程组 

你可能感兴趣的:(矩阵的奇异值)