单循环赛贝格尔编排法实现

单循环赛,是指所有参赛队伍都需跟其他队伍比赛一次,根据比赛得分,胜负场次来排列名次。比赛队伍为单数时,轮数等于队伍数,为双数时,轮数等于队伍数减一。如5支队伍需比赛5轮,6支队伍需比赛5轮。

首先介绍下逆时针轮转法。将队伍用阿拉伯数字从1开始编号,编排时将参赛队伍平均分成左右两排,左边从1开始自上向下排,右边按号数自下向上排,形成一个U型结构。如果队伍数为奇数,则在最后加一个“0”,凑成偶数。与0比赛的队伍该轮轮空。假设现在有7支队伍参赛,加上一个0,凑成8支。根据前面所述排列好队伍,然后将左右两排分别平行连线,就形成第一轮比赛的编排表,即1-02-73-64-5,队伍1在该轮轮空。第二轮开始,固定左上角的数字1,其余的数字想象成一个环,按逆时针方向移动一个位置,就形成第二轮的编排表。以此类推,每一轮移动一个位置,生成剩余轮次的编排表。最终形成的编排表如下:

     二            五        七

10 17 16 15 14 13 12

27 06 75 64 53 42 30

36 25 04 73 62 50 47

45 34 23 02 70 67 56

 

仔细观察,会发现从第4轮开始,队伍6总是跟上一轮轮空的队伍比赛,这就是逆时针轮转法的缺点,即第二轮的轮空队从第四轮开始,每轮都与前一轮的轮空队伍比赛。

贝格尔编排法与逆时针轮转法类似,不过有两个区别。一是交替固定最大的数字(或者0)在左上角和右上角,当前轮次在左上角,则下一轮固定到右上角。二是固定最大数字(或者0)后,剩余的数字想象成一个环,移动一定间隔,这个间隔根据队伍数决定:

队伍数 间隔数

<=4      0

5 - 6      1

7 - 8      2

9 -10     3

11-12    4

13-14    5

...         ...

假设有nn>=4)支队伍参赛,则间隔数的计算公式为(n+n%2-4)/2

 

同样以7支队伍参赛为例,首轮还是

1 - 0

2 - 7

3 - 6

4 - 5

 

第二轮将0移到左上角,剩下的数字从1开始逆时针移动2个间隔,这里1将移到原来4所在的位置

 

第三轮将0移动到右上角,剩下的数字继续逆时针移动2个间隔

 单循环赛贝格尔编排法实现_第1张图片

剩下的轮次原理同上,最终编排表如下

 单循环赛贝格尔编排法实现_第2张图片

代码实现的思路如下,最大数字的位置只需根据前一轮的位置就能确定,其他数字都是按顺序排列,形成一个有序的环。所以只需要确定1的位置,其他位置的数字都能确定。将位置按照第一轮的数字编号为1-8。在第一轮,1在位置1上。第二轮,1移动2个间隔,可以理解成移动3个位置,即1+3=4,取模一下,(1+3)%7=4,所以1将移到位置4。第三轮,继续移动3个位置,(4+3)%7=0,这里0就是7,也就是1移到位置7。第四轮,(7+3)%7=31移到位置3。以此类推。要注意的是,要是1移到的位置跟0冲突,就移到相对位置。0在位置8,那么1就移到位置10在位置11就移到位置8

 1 void BegerArrangement(intnAmount)
 2 {
 3     if (nAmount < 2 ||nAmount > 90 )
 4         return;
 5
 6     // 队伍数量
 7     int nFixAmount = nAmount;
 8     // 最后一支队伍的编号
 9     int nLastPlayerNo = nAmount;
10     // 奇数队伍,补上一支虚拟的队伍,最后一支队伍的编号为0
11     if(IsOdd(nAmount))
12     {
13         ++nFixAmount;
14         nLastPlayerNo = 0;
15     }
16     // 轮数
17     intnMaxRound = nFixAmount-1;
18     intnHalfAmount = nFixAmount / 2;
19
20     // 移动的间隔
21     intnStep = nFixAmount <= 4 ? 1 : (nFixAmount - 4) / 2 + 1;
22
23     intnRound = 1;
24     intnFirstPlayerPos = 1;
25     intnLastPlayerPos = 1;
26     intresult[100][200] = { 0 };
27     while(nRound <= nMaxRound)
28     {
29         // 每次最后一个玩家的位置需要左右对调
30         nLastPlayerPos = nFixAmount + 1 - nLastPlayerPos;
31
32         if(nRound == 1)
33             nFirstPlayerPos = 1;
34         else
35             nFirstPlayerPos = (nFirstPlayerPos+ nStep) % (nFixAmount - 1);
36
37         if(nFirstPlayerPos == 0)
38             nFirstPlayerPos = nFixAmount - 1;
39
40         if(nFirstPlayerPos == nLastPlayerPos)
41             nFirstPlayerPos = nFixAmount + 1 - nLastPlayerPos;
42
43         for (int i = 1; i<= nHalfAmount; ++i)
44         {
45             int nPos[2] = { i, nFixAmount - i + 1 };
46             int nPlayer[2] = { 0, 0};
47             for (int j = 0; j < 2;++j)
48             {
49                 if (nPos[j] == nLastPlayerPos)
50                     nPlayer[j] =nLastPlayerNo;
51                 else if (nPos[j] 52                     nPlayer[j] = nFixAmount -nFirstPlayerPos + nPos[j];
53                 else
54                     nPlayer[j] = nPos[j] -nFirstPlayerPos + 1;
55
56                 result[i-1][(nRound-1)*2+j] = nPlayer[j];
57             }
58         }
59
60         ++nRound;
61     }
62
63     for (int i = 1; i<= nMaxRound; ++i)
64     {
65         if( i ==1 )
66             printf("%3s%-3d|", "r", i);
67         else
68             printf("%4s%-3d|", "r", i);
69     }
70     printf("\n");
71
72     for (int i = 0; i< nHalfAmount; ++i)
73     {
74         for (int j = 0; j< nMaxRound; ++j)
75         {
76             printf("%-2d-%2d | ", result[i][j*2], result[i][j*2+1]);
77         }
78         printf("\n");
79     }
80
81     printf("\n\n");
82 }

 

代码地址

https://github.com/windpenguin/WindUtilities

 

参考

http://www.xxkt.cn/zhxk/2007/24920.html

http://baike.baidu.com/item/%E5%8D%95%E5%BE%AA%E7%8E%AF%E8%B5%9B%E5%88%B6?sefr=enterbtn

http://baike.baidu.com/item/%E8%B4%9D%E6%A0%BC%E5%B0%94%E7%BC%96%E6%8E%92%E6%B3%95?sefr=enterbtn

你可能感兴趣的:(C_C++)