1.1006
2.
Problem Description
In a two-dimensional plane there are two line belts, there are two segments AB and CD, lxhgww's speed on AB is P and on CD is Q, he can move with the speed R on other area on the plane.
How long must he take to travel from A to D?
Input
The first line is the case number T.
For each case, there are three lines.
The first line, four integers, the coordinates of A and B: Ax Ay Bx By.
The second line , four integers, the coordinates of C and D:Cx Cy Dx Dy.
The third line, three integers, P Q R.
0<= Ax,Ay,Bx,By,Cx,Cy,Dx,Dy<=1000
1<=P,Q,R<=10
Output
The minimum time to travel from A to D, round to two decimals.
Sample Input
1
0 0 0 100
100 0 100 100
2 2 1
Sample Output
3.在二维平面上有两线带,有两段AB和CD,lxhgww的速度对AB是P,在CD是Q,他用速度R在其他地区在平面上移动。多久他从A到D?
4.先三分AB上的点,再三分CD上的点
证明:
设E在AB上,F在CD上。
AB 时间:f = AE / p,
Z和Y 时间:g = EF / r + FD / q。
f单调递增,而g先递减后递增。
两个函数叠加,所得的函数先递减后递增,所以用三分法
5.#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include