- vit细粒度图像分类(七)TBNet学习笔记
无妄无望
学习笔记人工智能深度学习分类
1.摘要细粒度鸟类图像识别致力于实现鸟类图像的准确分类,是机器人视觉跟踪中的一项基础性工作。鉴于濒危鸟类的监测和保护对保护濒危鸟类具有重要意义,需要采用自动化方法来促进鸟类的监测。在这项工作中,我们提出了一种新的基于机器人视觉跟踪的鸟类监视方法,该方法采用了一种名为TBNet的亲和关系感知模型,该模型结合了CNN和Transformer架构,并具有新颖的特征选择(FS)模块。具体来说,CNN是用来
- YOLOv8+DeepSORT多目标车辆跟踪(车辆检测+跟踪+车辆计数)(内附免费资源+部署讲解)
-嘟囔着拯救世界-
YOLOv8YOLOpython人工智能yolov8深度学习pytorch
目录一、前言二、开发环境(前提条件)三、环境搭建教程3.1、创建虚拟环境3.2、选择虚拟环境并安装所需要的包3.3、运行代码步骤3.3.1、克隆git储存库3.3.2、转到克隆库的文件夹下3.3.3、安装依赖项3.3.4、转到检测目录下3.3.5、用于yolov8物体检测+跟踪+车辆计数四、效果图一、前言欢迎阅读本篇博客!今天我们深入探索YOLOv8+deepsort视觉跟踪算法。结合YOLOv8
- 七轴开源协作机械臂myArm视觉跟踪技术!
大象机器人
人工智能机器人python机械臂ROS
引言ArUco标记是一种基于二维码的标记,可以被用于高效的场景识别和位置跟踪。这些标记的简单性和高效性使其成为机器视觉领域的理想选择,特别是在需要实时和高精度跟踪的场景中。结合机器学习和先进的图像处理技术,使用ArUco标记的机械臂系统可以实现更高级的自动化功能,如精确定位、导航和复杂动作的执行。本案例旨在展示结合ArUco标记和机械臂运动控制技术,实现对机械臂的高精度控制和姿态跟踪。通过分析和解
- 传输丰富的特征层次结构以实现稳健的视觉跟踪 Transferring Rich Feature Hierarchies for Robust Visual Tracking
代码的路
原文链接论文地址:https://arxiv.org/pdf/1501.04587.pdf摘要阻碍CNN应用于视觉跟踪的主要障碍是缺乏适当标记的训练数据。虽然释放CNN功率的现有应用程序通常需要大量数百万的训练数据,但是视觉跟踪应用程序通常在每个视频的第一帧中仅具有一个标记的示例。我们通过离线预培训CNN,然后将学到的丰富特征层次结构转移到在线跟踪来解决此研究问题。CNN还在在线跟踪期间进行微调,
- 【论文阅读】SPARK:针对视觉跟踪的空间感知在线增量攻击
prinTao
论文阅读spark大数据
SPARK:Spatial-AwareOnlineIncrementalAttackAgainstVisualTrackingintroduction在本文中,我们确定了视觉跟踪对抗性攻击的一个新任务:在线生成难以察觉的扰动,误导跟踪器沿着不正确的(无目标攻击,UA)或指定的轨迹(有针对性的攻击,TA)。为此,我们首先采用现有的攻击方法,即FGSM、BIM和C&W,提出了一种空间感知的基本攻击,并
- ResNet:视觉跟踪中的应用
lgdhang
SiamFC跟踪方法取得了很大的成功,同时也促进了深度学习在跟踪领域的发展。我们知道SiamFC采用的骨干网络是AlexNet,使用该网络来提取图像特征。AlexNet最早实在图像识别任务中被提出,第一次证实了卷积网络在CV领域的有效性,取得了2012年ImageNet竞赛的第一名。自此以后,许多的深度卷积网络被提出,如VGG,GoogLeNet以及ResNet等,可以看出从AlexNet到Res
- mininum_snap笔记
Xuan-ZY
路径规划算法-ros数学建模学习笔记
概念value正比正比位置速度加速度角度(旋转)jerk角速度推力(移动平缓,易于视觉跟踪)snap角加速度推力导数(节约能源)凸优化算法convexoptimization凸优化(ConvexOptimization)是数学和计算机科学领域的一个重要分支,主要研究如何有效地解决凸优化问题。凸优化问题的主要目标是找到一个函数的最小值,其中函数是凸函数,同时满足一定的约束条件,这些约束条件也必须是凸
- 【IR】什么是对抗攻击 | 视觉跟踪
ca1m4n
CV攻防目标跟踪安全
现在有机会接触一下针对深度学习神经网络的对抗攻击,并做整理如下对于CV攻防,其实去年12月组会听完就浏览过相关文章面向目标检测的对抗样本综述+后门防御,NIPS2022adversarialattackfortrackingCVPR2021|IoUAttack导读方法结果相关工作CVPR2020|CSA摘要方法结果CVPR2021|IoUAttackIoUAttack:TowardsTempora
- AI项目八:yolo5+Deepsort实现目标检测与跟踪(CPU版)
殷忆枫
AI计算机视觉人工智能目标检测计算机视觉
若该文为原创文章,转载请注明原文出处。一、DeepSORT简介DeepSORT是一种计算机视觉跟踪算法,用于在为每个对象分配ID的同时跟踪对象。DeepSORT是SORT(简单在线实时跟踪)算法的扩展。DeepSORT将深度学习引入到SORT算法中,通过添加外观描述符来减少身份切换,从而提高跟踪效率。这是提供两个demo,一是跟踪计数人员;二是车辆计数跟踪;二、环境搭建本人没有GPU的电脑,所以修
- 用于视觉跟踪的在线特征选择研究(Matlab代码实现)
程序猿鑫
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码实现1概述视觉跟踪是计算机视觉中的重要任务之一,它涉及在视频序列中准确地跟踪目标物体。在线特征选择是一种针对视觉跟踪的方法,通过动态地选择和更新跟踪目标的特征,以提高跟踪性能和鲁棒性。以下是一些可能的研究方向和方法:1.特征
- SeqTrack: Sequence to Sequence Learning for Visual Object Tracking
Sky_codes
论文阅读人工智能深度学习transformerVIT目标跟踪
摘要在本文中,我们提出了一种新的序列到序列学习框架的视觉跟踪,称为SeqTrack。它将视觉跟踪转换为一个序列生成问题,它以自回归的方式预测对象边界盒。这与之前的Siamese跟踪器和transformer跟踪器不同,它们依赖于设计复杂的磁头网络,如分类和回归头。SeqTrack只采用了一个简单的编解码器变压器架构。编码器使用bidirectionaltransformer提取视觉特征,而解码器使
- 基于CW32的K210二维舵机视觉跟踪物体
蓝色无际
pythonc语言
前言最近想要做一个项目是涉及用国产MCU--CW32配合K210控制舵机实现跟踪物体的目的,我想要实现一个功能就是识别到目标并且把目标的坐标信息通过串口传输给单片机,单片机控制舵机进行控制,那么视觉方面目前我认为最好的选择就是使用k210了,它不仅成本低,性能好,而且基于MicroPython的开发极易上手,单片机选用的是武汉芯源半导体公司的国产芯片CW32.什么是CW32CW32是武汉芯源半导体
- 用于视觉跟踪的在线特征选择研究(Matlab代码实现)
数学建模与科研
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码实现1概述视觉跟踪是计算机视觉中的重要任务之一,它涉及在视频序列中准确地跟踪目标物体。在线特征选择是一种针对视觉跟踪的方法,通过动态地选择和更新跟踪目标的特征,以提高跟踪性能和鲁棒性。以下是一些可能的研究方向和方法:1.特征
- ICCV2013 录用论文(目标跟踪相关部分)
简单生活FF
计算机视觉ICCVvisualtrackingComputerVisionVisualTrackingICCV2013
ICCV13,所有论文下载地址,请猛戳目前(截止9月11日晚)官网上只有录用论文的ID,但是在KyrosKutulakos主页上放出了所有收录论文的title和作者。现在只待各作者主页上放出draft了。以下将列出视觉跟踪方面的收录的几篇论文(以下大多只列出第一作者,这种字体的是Oral):单目标(表观模型):1.SeunghoonHong,BohyungHan.OrderlessTracking
- 基于对抗式深度学习和往复式深度学习的视觉目标跟踪
Donations
valse2019多目标跟踪深度学习在线
valse2019会议的workshop9《在线视觉跟踪》中上海交通大学的马超老师分享的题目是《基于对抗式深度学习和往复式深度学习的视觉目标跟踪》,本次分享主要是基于《VITAL:VisualTrackingviaAdversarialLearning》和《DeepAttentiveTrackingViaReciprocativeLearning》这两篇分别发表在CVPR2018和NIPS2018
- SwinTrack: A Simple and Strong Baseline for Transformer Tracking(NIPS2022)
写进メ诗的结尾。
单目标跟踪transformer深度学习人工智能目标跟踪计算机视觉
SwinTrack摘要介绍相关工作方法实验摘要近期,Transformer在视觉跟踪方面进行了深入探索,并展示了显著的潜力。然而,现有的基于Transformer的跟踪器主要将Transformer用于融合和增强由卷积神经网络提取的特征,Transformer在表征学习中的潜力仍未被发掘。在本文中,提出了一个建立在经典孪生框架基础之上的简单而高效的基于全注意力的Transformer跟踪器(Swi
- SiamGAT:Graph Attention Tracking
小左先生
目标跟踪孪生网络计算机视觉python人工智能深度学习
Abstract基于孪生网络的跟踪器将视觉跟踪任务描述为相似度匹配问题。几乎所有流行的孪生跟踪器都是通过目标分支和搜索分支之间的卷积特征互相关来实现相似学习的。然而,由于需要预先确定目标特征区域的大小,这些基于互相关的方法要么保留了大量的不利背景信息,要么丢失了大量的前景信息。此外,目标与搜索区域之间的全局匹配也在很大程度上忽略了目标的结构和部分信息。为了解决该问题,本文提出了一种简单的目标感知S
- SiamCAR: Siamese Fully Convolutional Classification and Regression for Visual Tracking
小左先生
SiamCAR孪生网络目标跟踪深度学习pytorch机器学习神经网络
本译文为了方便自我阅读,有能力请阅读原版:https://arxiv.org/abs/1911.07241摘要通过将视觉跟踪任务分解为两个子问题,分别是像素类别的分类和该像素处对象边界框的回归,提出了一种新的全卷积孪生网络,以逐像素的方式解决端到端的视觉跟踪问题。该框架由两个简单的子网组成:一个用于特征提取的孪生子网和一个用于边界框预测的分类回归子网。SiamCAR采用在线训练和离线跟踪的策略,在
- OpenCV实战(16)——角点检测详解
盼小辉丶
opencv计算机视觉人工智能
OpenCV实战(16)——角点检测详解0.前言1.Harris特征检测器1.1检测Harris角点1.2cv::cornerHarris函数参数2.可追踪的良好特征3.特征检测器的通用接口4.完整代码小结系列链接0.前言在计算机视觉中,兴趣点(interestpoints)也称为关键点(keypoints)或特征点(featurepoints),广泛用于解决对象识别、图像匹配、视觉跟踪、3D重建
- Deep Learning for Visual Tracking: AComprehensive Survey基于深度学习的视觉跟踪
嗯呢嗯呢
深度学习pythonpytorch深度学习
论文地址:https://arxiv.org/pdf/1912.00535.pdf摘要研究当前基于深度学习的可视化跟踪方法、基准数据集和评价指标。从9个关键方面总结了基于深度学习方法的基本特征、主要动机和贡献:网络架构、网络开发、视觉跟踪的网络训练、网络目标、网络输出、相关滤波器开发、鸟瞰跟踪、长期跟踪、在线跟踪。引言视觉跟踪:由目标初始状态估计未知的视觉目标的轨迹。应用自动驾驶汽车[1],自主机
- 连通区域
算法小妖
1概要连通区域(ConnectedComponent)一般是指图像中具有相同像素值且位置相邻的前景像素点组成的图像区域,连通区域分析是指将图像中的各个连通区域找出并标记。连通区域分析是一种在CV和图像分析处理的众多应用领域中较为常用和基本的方法。例如:OCR识别中字符分割提取(车牌识别、文本识别、字幕识别等)、视觉跟踪中的运动前景目标分割与提取(行人入侵检测、遗留物体检测、基于视觉的车辆检测与跟踪
- OpenCV实战(10)——积分图像详解
盼小辉丶
opencv计算机视觉图像处理
OpenCV实战(10)——积分图像详解0.前言1.积分图像计算2.自适应阈值2.1固定阈值的缺陷2.2使用自适应阈值2.3其它自适应阈值计算方法2.4完整代码3.使用直方图进行视觉跟踪3.1查找目标对象3.2完整代码小结系列链接0.前言我们知道直方图是通过遍历图像的所有像素并累积每个强度值在该图像中出现的频率来计算的。有时,我们只对计算图像某些区域的直方图感兴趣,在许多计算机视觉算法中,累积图像
- 目标跟踪总结
zbxzc
计算机视觉跟踪
最简单的目标跟踪(模版匹配)matchTemplateVisualTracking领域最新paper与codeTLDTracking-Learning-Detection原理分析TLD(Tracking-Learning-Detection)学习与源码理解之(一)TLD算法TLD视觉跟踪技术解析再谈PN学习庖丁解牛TLD比微软kinect更强的视频跟踪算法--TLD跟踪算法介绍1算法概述2runt
- 【论文阅读】Online Decision Based Visual Tracking via Reinforcement Learning
叶柖
论文笔记论文阅读计算机视觉人工智能强化学习
OnlineDecisionBasedVisualTrackingviaReinforcementLearning概述本文2020年发布于NeurIPS(CCF-A)。视觉跟踪通常基于目标检测或者模板区配,但它们都只适用于特定的场景或对象。因为它们遵循不同的跟踪原则,直接将它们融合在一起是不明智的。本文主要提出了一种新的视觉跟踪集成框架DTNet,它基于层次强化学习(HRL)的决策机制。该框架提供
- 【开源】Transformer 在CV领域全面开花:新出跟踪、分割、配准等总结
我爱计算机视觉
计算机视觉机器学习人工智能深度学习大数据
本文收录5月以来值得关注的Transformer相关开源论文,包括基于Transformer的自监督学习方法在CV任务中应用、视觉跟踪、视频预测、语义分割、图像配准,以及1篇针对Transformer风格的网络中,“attentionlayer”是否是必要的技术报告。01Self-SupervisedLearningwithSwinTransformers来自清华&西安交通大学&微软亚洲研究提出以
- Deep Reinforcement Learning for Visual Object Tracking in Videos学习笔记
WaitPX
强化学习目标跟踪深度学习计算机视觉
DeepReinforcementLearningforVisualObjectTrackinginVideos学习笔记1.主要贡献(1)我们提出并开发了一种新的用于视觉跟踪的卷积循环神经网络模型。该方法直接利用深度学习模型的能力自动学习空间和时间约束。(2)我们的框架是使用深度RL算法进行端到端训练的,在这种算法中,模型经过优化,以在长期内最大限度地提高跟踪性能。(3)我们的模型是完全离线训练的
- 《Siam R-CNN: Visual Tracking by Re-Detection》------文献翻译
听我的错不了
目标跟踪文献翻译
SiamR-CNN:VisualTrackingbyRe-Detection(SiamR-CNN:通过重新检测进行视觉跟踪)解读:https://www.bilibili.com/read/cv4690157https://blog.csdn.net/qq_33012833/article/details/105802190?ops_request_misc=&request_id=&biz_id
- Siam R-CNN: 通过重检测进行视觉跟踪
AiCharm
#目标检测篇深度学习人工智能计算机视觉目标检测
SiamR-CNN:通过重检测进行视觉跟踪SiamR-CNN:VisualTrackingbyRe-DetectionContributionsMethodSiamRCNNVideoHardExampleMiningTrackletDynamicProgrammingAlgorithm实验总结更多Ai资讯:公主号AiCharmSiamR-CNN:VisualTrackingbyRe-Detecti
- Opencv学习之角点检测
~晓广~
opencvc++opencv
Opencv学习之角点检测角点检测在图像处理和计算机视觉领域,兴趣点(interestpoints),也被称作关键点(keypoints)、特征点(feturepoints)。它被大量用于解决物体识别、图像识别、图像匹配、视觉跟踪、三维重建等一系列的问题,如果能检测到足够多特殊的点,同时它们的区分度很高,并且可以精确定位稳定的特征,那么这个方法就具有使用价值。图像特征类型被分为以下三种:(1)边缘
- 商汤科技 & 中科院自动化所:视觉跟踪之端到端的光流相关滤波 | CVPR 2018
PaperWeekly
作者丨朱政学校丨中科院自动化所博士生单位丨商汤科技研究方向丨视觉目标跟踪及其在机器人中的应用本文主要介绍我们发表于CVPR2018上的一篇文章:一种端到端的光流相关滤波跟踪算法。据我们所知,这是第一篇把Flow提取和tracking任务统一在一个网络里面的工作。■论文|End-to-endFlowCorrelationTrackingwithSpatial-temporalAttention■链接
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro