以2017年华为杯研究生数学建模比赛A题(无人机在抢险救灾中的优化运用)为例,讲解蚁群算法在求解最优路径问题中的应用,我们将问题进行了简化,描述如下:
无人机从某一个基地出发,途径所有救援点,然后回到基地(每个点只经过一次),求解最佳行驶路径。
基地和所有救援点的散点图如图1所示。
蚁群算法是寻求优化路径的一种算法,这种算法的思想起源于蚂蚁在寻求事物过程中的路径,这种算法在本质上属于一种启发式全局优化算法,具有信息正反馈、分布计算和启发式搜索的特点。蚁群算法采用的规则主要为环境信息、避障规则、移动规则、散发信息素规则等。蚁群算法主要应用在组合优化问题上,同时其在网络路由中应用也越来越广泛。
最终使用蚁群算法得到的救援路线如图2所示:
我们提供了可运行的代码,并添加了注释,大家可自行去了解该算法的精髓。代码包含三个部分,主函数mainfun.m调用Antcolonyalgorithm.m和flightRoute.m. Antcolonyalgorithm.m用于实现蚁群算法,flightRoute.m用于画飞行路线。
function mainfun()
% 位点坐标
position=[ 91.2000 94.3000
83.4000 90.4000
76.7000 88.8000
57.8000 91.4000
75.6000 91.4000
57.8000 88.0000
51.1000 88.9000
30.0000 90.6000
30.0000 99.4000
42.2000 78.1000
58.9000 92.7000
62.3000 93.2000
50.0000 78.9000
44.5000 86.7000
55.6000 71.2000
52.3000 67.3000
72.3000 64.7000
82.3000 66.0000
85.6000 71.2000
82.3000 67.3000
85.6000 58.2000
85.6000 60.8000
83.4000 59.5000
50.0000 71.7000
52.3000 78.4000
44.5000 75.8000
66.0000 93.6000
62.2000 82.9000
78.9000 93.2000
67.8000 116.5000
52.2000 120.4000
55.6000 80.2000
91.2000 124.3000
53.3000 65.9000
110.0000 55.0000];
% 所有点的散点图
figure
scatter(position(:,1),position(:,2),'ro');
hold on
axis([10,120,20,140])
plot(110,55,'ro','MarkerFaceColor','r')
text(100,60,'基地J','Color','r')
set(gca,'FontSize',16)
% 蚁群算法
[~,L_best,L_ave,Shortest_Route,Shortest_Length]=Antcolonyalgorithm(position,2000,30,0.9,0.9,0.1,0.1);
figure
flightRoute(position,Shortest_Route)
hold on
axis([10,120,20,140])
plot(110,55,'ro','MarkerFaceColor','r')
text(100,60,'基地J','Color','r')
set(gca,'FontSize',16)
figure
plot(L_best,'b','LineWidth',2)
hold on
plot(L_ave,'b','LineWidth',2)
xlabel('迭代次数')
ylabel('平均距离和最短距离')
set(gca,'FontSize',16)
end
蚁群算法函数——
function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=Antcolonyalgorithm(C,NC_max,m,Alpha,Beta,Rho,Q)
% 输入输出说明
% C城市的坐标
% NC_max 最大迭代次数
% m 蚂蚁个数
% Rho 信息素蒸发系数
% Q 信息素增加强度系数
% R_best 最佳路线
% L_best 最佳路线的长度
% Alpha 信息素重要程度
% Beta 启发式因子重要程度
%变量初始化
n=size(C,1);
D=zeros(n,n);
for i=1:n
for j=1:n
if i~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
else
D(i,j)=eps;
end
D(j,i)=D(i,j);
end
end
Eta=1./D;
Tau=ones(n,n);
Tabu=zeros(m,n);
NC=1;
R_best=zeros(NC_max,n);
L_best=inf.*ones(NC_max,1);
L_ave=zeros(NC_max,1);
while NC<=NC_max
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1));
J=zeros(1,(n-j+1));
P=J;
Jc=1;
for k=1:n
if isempty(find(visited==k, 1))
J(Jc)=k;
Jc=Jc+1;
end
end
%概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end
L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1));
end
L(i)=L(i)+D(R(1),R(n));
end
L_best(NC)=min(L);
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);
L_ave(NC)=mean(L);
NC=NC+1;
%更新信息素
Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;
%禁忌表清零
Tabu=zeros(m,n);
end
%输出结果
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:);
Shortest_Length=L_best(Pos(1));
end
画路线图的函数,输入为位点坐标和路径——
function flightRoute(C,Rou)
Num=length(Rou);
scatter(C(:,1),C(:,2));
hold on
plot([C(Rou(1),1),C(Rou(Num),1)],[C(Rou(1),2),C(Rou(Num),2)],'r','LineWidth',3)
hold on
for ii=2:Num
plot([C(Rou(ii-1),1),C(Rou(ii),1)],[C(Rou(ii-1),2),C(Rou(ii),2)],'r','LineWidth',3)
hold on
end
end
原文链接见:https://mp.weixin.qq.com/s?__biz=Mzg2OTIzOTg0Mw==&mid=2247484010&idx=1&sn=a959ec5bc9c4482567b1178fd5e08dbd&chksm=cea15f26f9d6d630cc904339618825110f861fef9071cf21d4dbd203d547b7b372f30b7572b2&token=1990617603&lang=zh_CN#rd
欢迎关注公众号”数学建模公会“,获取源代码文件。