交流电机Clark变换中的功率不变约束与幅值不变约束

对符号进行说明如下:

  • ω \omega ω —— 相电流角频率
  • P 1 , P 2 P_1, P_2 P1,P2 —— 变换前后的功率
  • N 2 , N 3 N_2, N_3 N2,N3 —— 分别为两相和三相相绕组等效匝数
  • i a , i b , i c i_a, i_b, i_c ia,ib,ic —— 电机三相相电流,设为正弦量,且时间相位上互差120°;
  • u a , u b , u c u_a, u_b, u_c ua,ub,uc —— 电机三相相电压
  • u α , i α , u β , i β u_\alpha, i_\alpha, u_\beta, i_\beta uα,iα,uβ,iβ —— 两相静止坐标系下的电压和电流矢量

明确点

首先明确无论采用何种变换,必须保证电机气隙内磁动势相同,也即变换前后磁动势必须等效,根据下图可知,利用几何关系有:
交流电机Clark变换中的功率不变约束与幅值不变约束_第1张图片
{ N 3 i a − 1 2 N 3 i b − 1 2 N 3 i c = N 2 i α 3 2 N 3 i b − 3 2 N 3 i c = N 2 i β (1-1) \begin{cases} N_3i_a - \frac{1}{2}N_3i_b - \frac{1}{2}N_3i_c = N_2i_\alpha \\ \frac{\sqrt{3}}{2}N_3i_b - \frac{\sqrt{3}}{2}N_3i_c = N_2i_\beta\\ \end{cases} \tag{1-1} { N3ia21N3ib21N3ic=N2iα23 N3ib23 N3ic=N2iβ(1-1)
   ⟹    [ i α i β ] = N 3 N 2 [ 1 − 1 2 − 1 2 0 3 2 − 3 2 ] [ i a i b i c ] (1-2) \implies \left[ \begin{matrix} i_\alpha \\ i_\beta \end{matrix} \right] = \frac{ N_3 }{ N_2 } \left[\begin{matrix} 1 & -\frac{ 1 }{ 2 } & -\frac{ 1 }{ 2 } \\ 0 & \frac{ \sqrt{3} }{ 2 } & -\frac{ \sqrt{3} }{ 2 } \end{matrix} \right] \left[ \begin{matrix} i_a \\ i_b \\ i_c\end{matrix} \right] \tag{1-2} [iαiβ]=N2N3[102123 2123 ]iaibic(1-2)
k = N 3 N 2 k=\frac{N_3 }{ N_2 } k=N2N3,根据不同的约束可以推导出不同 k k k值。

恒幅值约束

恒幅值约束在于变量在变换前后的幅值不变,因为三相电流都为正弦量,且时间相位上互差120°,因此:
{ i a = I c o s ( ω t ) i b = I c o s ( ω t + 120 ) i c = I c o s ( ω t − 120 ) (2-1) \begin{cases} i_a = I cos( \omega t ) \\ i_b = I cos( \omega t + 120 ) \\ i_c = I cos( \omega t - 120 ) \\ \end{cases} \tag{2-1} ia=Icos(ωt)ib=Icos(ωt+120)ic=Icos(ωt120)(2-1)
将式(2-1)带入式(1-2),且 i a + i b + i c = 0 i_a + i_b + i_c = 0 ia+ib+ic=0,可以得到:
i α = k ( i a − 1 2 i b − 1 2 i c ) = 3 2 k i a = 3 2 k I c o s ( ω t ) i β = 3 2 k ( i b − i c ) = 3 2 k I [ c o s ( ω t + 120 ) − c o s ( ω t − 120 ) ] = − 3 2 k I s i n ( ω t ) (2-2) i_\alpha = k(i_a - \frac{1}{2}i_b - \frac{1}{2}i_c) = \frac{3}{2}ki_a = \frac{3}{2}kIcos(\omega t) \\ i_\beta = \frac{ \sqrt{3} }{2}k(i_b-i_c) = \frac{ \sqrt{3} }{2}kI[cos(\omega t + 120) - cos(\omega t - 120)] = -\frac{3}{2}kIsin(\omega t) \tag{2-2} iα=k(ia21ib21ic)=23kia=23kIcos(ωt)iβ=23 k(ibic)=23 kI[cos(ωt+120)cos(ωt120)]=23kIsin(ωt)(2-2)
由式(2-2)可知,要想保证变换前后幅值不变,则有:
{ ∣ 3 2 k I ∣ = I ∣ − 3 2 k I ∣ = I (2-3) \begin{cases} | \frac{ 3}{2}kI | = I \\ | -\frac{3}{2}kI | = I \\ \end{cases} \tag{2-3} { 23kI=I23kI=I(2-3)
求解式(2-3)即得 k = 2 3 k = \frac{ 2 }{ 3 } k=32

恒功率约束

恒功率约束在于变换前后通入的功率保持不变,即输入三相功率等于变换后的两相功率。变换前的功率比较容易,三相电压电流瞬时值相乘即可:
P 1 = u a i a + u b i b + u c i c (3-1) P_1 = u_a i_a + u_b i_b + u_c i_c \tag{3-1} P1=uaia+ubib+ucic(3-1)
如果取与电流变换相同的变换阵,则有:
u α = k ( u a − 1 2 u b − 1 2 u c ) u β = 3 2 k ( u b − u c ) (3-2) u_\alpha = k(u_a - \frac{1}{2}u_b - \frac{1}{2}u_c) \\ u_\beta = \frac{3}{2}k(u_b - u_c) \tag{3-2} uα=k(ua21ub21uc)uβ=23k(ubuc)(3-2)
变换后的功率与变换前的功率计算式类似,有:
P 2 = u α i α + u β i β (3-3) P_2 = u_\alpha i_\alpha + u_\beta i_\beta \tag{3-3} P2=uαiα+uβiβ(3-3)
将式(2-2)与式(3-2)带入式(3-3)可知:
P 2 = 3 2 k 2 ( u a − 1 2 u b − 1 2 u c ) i a + 3 4 k 2 ( u b − u c ) ( i b − i c ) = 3 4 k 2 u a i a + 3 4 k 2 u b i b + 3 4 k 2 u c i c + 3 4 k 2 u a i a − 3 4 k 2 u b i a − 3 4 k 2 u c i a − 3 4 k 2 u c i b − 3 4 k 2 u b i c = 3 4 k 2 P 1 + 3 4 k 2 ( u a i a − u b i a − u c i a − u c i b − u b i c ) (3-4) P_2 = \frac{ 3}{2}k^2(u_a - \frac{1}{2}u_b - \frac{1}{2}u_c)i_a + \frac{3}{4}k^2(u_b - u_c)(i_b - i_c) \\ = \frac{3}{4}k^2u_ai_a + \frac{3}{4}k^2u_bi_b + \frac{3}{4}k^2u_ci_c + \\ \frac{3}{4}k^2u_ai_a - \frac{3}{4}k^2u_bi_a - \frac{3}{4}k^2u_ci_a - \frac{3}{4}k^2u_ci_b - \frac{3}{4}k^2u_bi_c \\ = \frac{3}{4}k^2P_1 + \frac{3}{4}k^2(u_ai_a - u_bi_a - u_ci_a - u_ci_b - u_bi_c) \tag{3-4} P2=23k2(ua21ub21uc)ia+43k2(ubuc)(ibic)=43k2uaia+43k2ubib+43k2ucic+43k2uaia43k2ubia43k2ucia43k2ucib43k2ubic=43k2P1+43k2(uaiaubiauciaucibubic)(3-4)
利用 − i a = i b + i c -i_a = i_b + i_c ia=ib+ic带入式(3-4)中的 − u b i a − u c i a - u_bi_a - u_ci_a ubiaucia部分,则可继续展开得到:
P 2 = 3 4 k 2 P 1 + 3 4 k 2 ( u a i a + u b i b + u b i c + u c i b + u c i c − u c i b − u b i c ) = 3 4 k 2 P 1 + 3 4 k 2 ( u a i a + u b i b + u c i c ) = 3 4 k 2 P 1 + 3 4 k 2 P 1 = 3 2 k 2 P 1 (3-5) P_2 = \frac{ 3 }{ 4 }k^2P_1 + \frac{ 3 }{ 4 }k^2(u_ai_a + u_bi_b + u_bi_c + u_ci_b + u_ci_c - u_ci_b - u_bi_c) \\ = \frac{ 3 }{ 4 }k^2P_1 + \frac{ 3 }{ 4 }k^2(u_ai_a + u_bi_b + u_ci_c) \\ = \frac{ 3 }{ 4 }k^2P_1 + \frac{ 3 }{ 4 }k^2P_1 \\ = \frac{ 3 }{ 2 }k^2P_1 \tag{3-5} P2=43k2P1+43k2(uaia+ubib+ubic+ucib+ucicucibubic)=43k2P1+43k2(uaia+ubib+ucic)=43k2P1+43k2P1=23k2P1(3-5)
为了保证功率不变,则需要 P 2 = P 1 P_2 = P_1 P2=P1,有:
P 2 = 3 2 k 2 P 1 = P 1 (3-6) P_2 = \frac{ 3 }{ 2 }k^2P_1 = P_1 \tag{3-6} P2=23k2P1=P1(3-6)
显然,此使 k = 2 3 k = \sqrt{\frac{ 2 }{ 3 } } k=32

Note

注意到,采用恒幅值变化后,功率发生了变化:
P 2 = 3 2 k 2 P 1 = 2 3 P 1 P_2 = \frac{3}{2}k^2P_1 = \frac{2}{3}P_1 P2=23k2P1=32P1
因此导致最终推导电机转矩计算式时会产生差异。

你可能感兴趣的:(交流电机Clark变换中的功率不变约束与幅值不变约束)