There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the dice are fair dice, so the probability of rolling each value, 1 to K1, K2, K3 is exactly 1 / K1, 1 / K2 and 1 / K3. You have a counter, and the game is played as follow:
Calculate the expectation of the number of times that you cast dice before the end of the game.
Input
There are multiple test cases. The first line of input is an integer T (0 < T <= 300) indicating the number of test cases. Then T test cases follow. Each test case is a line contains 7 non-negative integers n, K1, K2, K3, a, b, c (0 <= n <= 500, 1 < K1, K2, K3 <= 6, 1 <= a <= K1, 1 <= b <= K2, 1 <= c <= K3).
Output
For each test case, output the answer in a single line. A relative error of 1e-8 will be accepted.
Sample Input
2 0 2 2 2 1 1 1 0 6 6 6 1 1 1
Sample Output
1.142857142857143 1.004651162790698
double p[510];//dp[i]中dp[0]的系数
double con[510];//dp[i]的常数
//dp[i]=p[i]*dp[0]+con[i];
//dp[i]表示和为i时还需扔筛子的次数
//可以列出n个方程
/*
dp[n]=dp[0]*x+sigma(dp[n+k]*sum[k]);
dp[n-1]=dp[0]*x+sigma(dp[n+k]*sum[k]);
.....
dp[0]=dp[0]*x+sigma(dp[0+k]*sum[k]);
其中k为一次可能的筛子数的总和,sum[k]为和为k的概率
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
double sum[100];
double p[510];//dp[i]中dp[0]的系数
double con[510];//dp[i]的常数
int main()
{
int t,n,k1,k2,k3,i,j,k,a,b,c;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
double x=(1.0/k1*1.0/k2*1.0/k3);
memset(p,0,sizeof(p));
memset(con,0,sizeof(con));
memset(sum,0,sizeof(sum));
for(i=1;i<=k1;i++)
{
for(j=1;j<=k2;j++)
{
for(k=1;k<=k3;k++)
{
if(i==a&&j==b&&k==c) continue;
sum[i+j+k]+=x;
}
}
}
for(i=n;i>=0;i--)
{
for(j=i+3;j<=k1+k2+k3+i;j++)
{
p[i]+=p[j]*sum[j-i];
con[i]+=con[j]*sum[j-i];
}
p[i]+=x;
con[i]+=1.0;
}
printf("%.15lf\n",con[0]/(1.0-p[0]));
}
}