- 生物启发AI新突破:神经形态芯片+脉冲神经网络落地指南
HeartException
人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站《生物启发AI新突破:神经形态芯片+脉冲神经网络落地指南》副标题:基于2025年英特尔Loihi3芯片的工业级部署实战(附能耗对比&代码库)封面建议:脉冲神经网络动态脉冲传导图覆盖在神经形态芯片显微结构上,标注「能效比:传统GPU的1/800」一、2025生物启发AI的临界点突破生物神经特性事件
- 文献阅读篇#8:YOLO如何实现多模态
hjs_deeplearning
YOLO人工智能深度学习目标检测多模态模态融合
一、引言YOLO众所周知是一个目标检测、跟踪、计数等等的视觉模型,对于YOLO来说,它的核心功能还是分类,识别出物体的类别并辅助以计数、跟踪等等功能。但是,光使用一个YOLO模型进行目标检测只能提取一张图片的特征,或者只能通过一条路去提取特征,最终输出结果。而前面提到的多模态,则会引入另一个维度的特征。例如二区Top期刊《Underwateracousticintelligentspectrums
- 【SNN脉冲神经网络2】AdEx神经网络软件仿真
XvnNing
SNN脉冲神经网络神经网络人工智能深度学习
本文使用AdEx神经元搭建一个完整的神经网络来进行生物神经脉冲现象的仿真。主要的目的是为了验证数学原理,因此只调用的numpy函数包。对应的代码例程如下:1.导入所需的Python函数库importnumpyasnpimportmatplotlib.pyplotaspltimportreimportos2.定义均值函数以及一些常用函数defbin_data(data):try:returnnp.m
- CARLsim开源程序 是一个高效、易用、GPU 加速的软件框架,用于模拟具有高度生物细节的大规模脉冲神经网络 (SNN) 模型。
struggle2025
神经网络人工智能深度学习
一、软件介绍文末提供程序和源码下载CARLsim是一个高效、易用的GPU加速库,用于模拟具有高度生物学细节的大规模脉冲神经网络(SNN)模型。CARLsim允许在通用x86CPU和标准现成GPU上以逼真的突触动力学执行Izhikevich脉冲神经元网络。该模拟器在C/C++中提供了一个类似PyNN的编程接口,允许在突触、神经元和网络级别指定详细信息和参数。二、CARLsim6的新功能包括:CUDA
- 构建医学文献智能助手:基于 LangChain 的专业领域 RAG 系统实践
前言在当今医疗科技快速发展的时代,每天都有数以千计的医学研究成果在全球范围内发表。从临床试验报告到基础研究论文,从流行病学调查到药物研发数据,这些专业文献承载着推动医学进步的重要知识。然而,面对如此海量且专业性极强的文献资料,医疗从业者往往感到力不从心。如何在有限的时间内,准确把握文献核心价值,并将其转化为临床实践的指导?这个问题一直困扰着整个医疗行业。1.项目背景与业务价值1.1医学文献阅读的困
- Gen AI:重塑未来的创造力工具箱
一杯酒zpy
人工智能
目录页一、GenAI工具箱助力大学生涯1.通用GenAI工具2.GenAI科研辅助1.文献阅读与论文写作2.数据分析与可视化3.AI翻译工具二、GenAI办公、学习助手1.PPT制作2.表格制作3.AI思维导图4.AI办公5.AI图像处理6.AI视频处理7.AI音频处理8.AI编程工具9.AI搜索引擎说明:网盘资源密码获取:关注微信公众号【土木岛】,后台回复文件框中提示的对应关键词自动发送。点击查
- **脉冲神经网络:探索发散创新的潜力**一、引言随着人工智能技术的飞速发展,神经网络已成为解决复杂问题的强大工具。其中,脉冲神经网络(Spiking Neural Network,SNN)作为一种模拟
weixin_43880734
人工智能神经网络深度学习python
脉冲神经网络:探索发散创新的潜力一、引言随着人工智能技术的飞速发展,神经网络已成为解决复杂问题的强大工具。其中,脉冲神经网络(SpikingNeuralNetwork,SNN)作为一种模拟生物神经网络的工作机制,因其高效、节能的特性而受到广泛关注。本文将深入探讨脉冲神经网络的基本原理、创新应用以及发展前景。二、脉冲神经网络概述脉冲神经网络是一种模拟生物神经网络中神经元之间通信方式的网络。与传统的人
- 数学符号和标识中英文列表(含义与示例)
纸上笔下
MatheMatiCs算法数学符号英文中文微积分导数
数学符号和标识的参考,涵盖了数学的各个主要分支,并提供清晰的定义和示例,方便快速查找和学习收藏。目录基础数学符号几何符号代数符号线性代数符号概率与统计符号集合论符号逻辑符号微积分与分析符号数字与字母符号特点中英对照:提供符号的英文术语,方便国际交流和文献阅读。应用示例:提供典型数学表达式,例如导数计算(ddx(x2)=2x\frac{d}{dx}(x^2)=2xdxd(x2)=2x)。1.基础数学
- 学习周报:文献阅读+Fluent案例+有限体积法理论学习
2301_79714145
学习
目录摘要Abstract文献阅读:使用带有域分解的PINN求解NS方程文献摘要文献讨论|结论实验设置NS方程介绍PINN框架损失函数域分解减轻梯度病理的方法动态权重方法新型网络架构案例证明:2D圆柱尾流Fluent案例:径向流入的穿孔管道分析几何建模部分网格划分求解器设置结果展示有限体积法学习:总结摘要在本周中,通过阅读文献,进一步了解了使用域分解PINN来解决问题的适用情况以及其原理和优劣性,具
- 文献阅读篇#5:5月一区好文阅读,BFA-YOLO,用于建筑信息建模!(上)
hjs_deeplearning
YOLO人工智能学习计算机视觉深度学习文献阅读论文阅读
期刊简介:《AdvancedEngineeringInformatics》创刊于2002年,由ElsevierLtd出版商出版,出版周期Quarterly。该刊已被SCIE数据库收录,在中科院最新升级版分区表中,该刊分区信息为大类学科工程技术1区,2023年影响因子为8。这篇文章收录于五月份,是一篇最近发表的文章,让我们一起看看它有何过人之处,能得到一区期刊的赏识。文章标题:BFA-YOLO:Ab
- 文献阅读(一)植物应对干旱的生理学反应 | The physiology of plant responses to drought
Aaron Hill
文献阅读陆地生态
分享一篇Science上的综述文章,主要探讨了植物应对干旱的生理机制,强调通过调控激素信号提升植物耐旱性、保障粮食安全的重要性。摘要干旱每年致使农作物产量的损失,比所有病原体造成损失的总和还要多。为适应土壤中的湿度梯度变化,植物会改变自身生理机能,调整根系的生长和结构,并关闭地上部分的气孔。这些组织特异性反应改变了细胞信号的传导,致使植物提前开花或生长不良,且往往会造成产量下降。对模式植物拟南芥进
- 经典文献阅读之--Kinematic-ICP(动态优化激光雷达与轮式里程计融合)
敢敢のwings
slam开发语言语言模型
0.简介传统的激光雷达里程计系统通过点云配准来计算移动机器人的自运动(ego-motion),但它们通常没有考虑机器人的运动学特性,这可能导致不准确的运动估计,特别是在机器人不可能发生某些运动(如沿z轴的小幅移动)的情况下。《Kinematic-ICP:EnhancingLiDAROdometrywithKinematicConstraintsforWheeledMobileRobotsMovin
- 研究生科研需求的国产AI工具分类推荐
小研学术
人工智能深度学习职场和发展求职招聘
以下是针对研究生科研需求的国产AI工具分类推荐,覆盖论文写作、文献阅读、图像/视频生成、图表制作、数据分析等场景,结合功能特点、优势及所属公司信息整理,引用多来源信息确保可靠性:一、论文写作与学术规范工具名称公司/开发团队核心功能与特点优势与适用场景来源锐智AI未明确(网页8提及)-全流程支持(选题→大纲→初稿→查重)-免费智能选题生成10个方向-支持无限改稿与答辩PPT生成操作界面友好,适合新手
- 10个DeepSeek、ChatGPT提示词更快更好的学术文献阅读!
AIWritePaper官方账号
AIWritePaperPromptChatGPT人工智能chatgptAIWritePaperDeepSeek智能写作文献阅读
目录AIGC助力快速阅读文献10个文献阅读提示词大家好这里是AIWritePaper官方账号,官网AIWritePaper~AIGC助力快速阅读文献在当今学术界,海量的论文如潮水般涌来,想要跟上最新研究进展简直比在图书馆里找到一本没被借走的热门小说还难!不过别担心,ChatGPT和横空出世的DeepSeek(包括SciSpace、SciteAI、Litmaps、YomuAI等)这些人工智能助手就像
- SU-YOLO:基于脉冲神经网络的高效水下目标检测模型解析
清风AI
YOLO算法魔改系列深度学习算法详解及代码复现毕业设计代码实现计算机视觉深度学习人工智能YOLO目标检测python神经网络
论文地址:https://arxiv.org/pdf/2503.24389目录一、论文概述二、创新点解析1.基于脉冲的水下图像去噪(SpikeDenoiser)原理与结构2.分离批归一化(SeBN)原理与结构3.优化的残差块(SU-Block)原理与结构三、代码复现指南环境配置模型训练四、仿真结果分析性能对比(URPC2019)可视化效果五、应用场景1.海洋生物监测2.水下设施巡检六、总结与展望一
- 考研初试复试高效备考软件
ZenverTao
考研
准备考研时,不仅要投入大量时间,还需要借助高效的工具助你走向成功。本文将为您推荐几款考研初试和复试过程中好用的软件,让您的备考事半功倍。1.SumiNote考研过程中文献阅读至关重要。SumiNote这款工具专为文献阅读设计,您可以轻松上传多个文献文件,它会在几分钟内帮您精炼整理出详尽的笔记,并确保每条信息都可以追溯原文出处,无需担心错漏,极大提升了文献整理效率。2.白瓜面试学会如何应对面试也是考
- 第五十三周:文献阅读
m0_66015895
人工智能python算法
目录摘要Abstract文献阅读:一种用于室内空气质量预测的新型变分自编码器深度学习框架现有问题提出方法方法论1、偏最小二乘(PLS)2、变分自动编码器(VAE)3、变分自动编码器回归器(VAER)所提出的方法(PLS-VAER)研究实验1、数据集2、评估指标3、实验过程4、实验结果代码实现总结摘要本周我阅读的文献《Anoveldeeplearningframeworkwithvariationa
- 机器学习周报第39周
Ramos_zl
机器学习人工智能
一、文献阅读论文标题:ObjectDetectioninVideosbyHighQualityObjectLinking1.1摘要与静态图像中的目标检测相比,视频中的目标检测由于图像质量下降而更具挑战性。许多以前的方法都通过链接视频中的相同对象以形成管状结构,并在管状结构中聚合分类得分,从而利用时间上下文信息。这些方法首先使用静态图像检测器来检测每帧中的对象,然后根据不同帧中对象框之间的空间重叠情
- 学习周报:文献阅读+Fluent案例+有限体积法理论学习
2301_79714145
学习
目录摘要Abstract文献阅读:基于自适应进化人工蜂群算法的混合bp神经网络模型用于水质指标预测文献摘要讨论|结论理论介绍BPNNABC-BPNN实现流程适应函数的选择模型评价指标实验设置实验结果Fluent实例:带扭曲插入物的管道中的流动几何建模网格划分求解器设置结果展示理论学习部分总结摘要在本周中,通过阅读文献,了解了AEABC-BPNN水质预测模型,具体做法为:以生物群落中的蜜蜂为蓝本进行
- 文献阅读 | PNAS | 经验和发育中的前额叶皮层
程序员
:::block-1文献介绍文献题目:经验和发育中的前额叶皮层\研究团队:BryanKolb(加拿大莱斯布里奇大学)\发表时间:2012-10-08\发表期刊:PNAS\影响因子:9.4\DOI:10.1073/pnas.1121251109:::摘要前额叶皮层(PFC)接收来自所有其他皮层区域的输入,并负责规划和指导跨时间的运动、认知、情感和社会行为。它具有较长的发育过程,这使得它能够通过经验获
- 文献阅读 250303-Fire weakens land carbon sinks before 1.5 °C
ZzYH22
笔记
Fireweakenslandcarbonsinksbefore1.5 °C来自##Intro:使用火-植被耦合模型来探索全球变暖水平的区域影响和反馈。讨论了1.5°C的目标是否与在考虑火灾状况变化时避免重大生态系统变化一致。我们发现,火灾开始显著影响全球碳储存的全球变暖水平比工业化前水平高出1.07°C(0.8–1.34°C),并得出结论,火灾已经在降低土地碳汇的有效性方面发挥了重要作用。由于气
- AVM 环视拼接 鱼眼相机
选与握
#环视拼接AVM
https://zhuanlan.zhihu.com/p/651306620AVM环视拼接方法介绍从内外参推导IPM变换方程及代码实现(生成AVM环视拼接图)_avm拼接-CSDN博客经典文献阅读之--ExtrinsicSelf-calibrationoftheSurround-viewSystem:AWeakly...(环视系统的外参自标定)-CSDN博客经典文献阅读之--:AWeakly...
- 文献阅读 250222-A Robust Causal Machine Learning Approach
ZzYH22
笔记
InferringHeterogeneousTreatmentEffectsofCrashesonHighwayTraffic:ADoublyRobustCausalMachineLearningApproach来自##Intro:研究问题:高速公路交通事故对交通系统和经济都产生了相当大的影响。在这种情况下,准确可靠的应急响应对于有效的交通管理至关重要。但是,车祸对交通状态的影响因不同因素而异,并
- 文献阅读(part2)--Towards K-means-friendly spaces Simultaneous deep learning and clustering
GUI Research Group
机器学习python深度聚类
学习笔记,仅供参考文章目录AbstractIntroductionBackgroundandRelatedWorksProposedFormulationOptimizationProcedureInitializationviaLayer-wisePre-Training(通过分层预训练进行初始化)AlternatingStochasticOptimizationExperiments合成数据演
- 【文献阅读分享】PAP-REC:个性化自动提示生成框架✨
Sheakan
推荐系统论文阅读总结人工智能推荐系统
标题期刊年份PAP-REC:PersonalizedAutomaticPromptforRecommendationLanguageModelACMTransactionsonInformationSystems(TOIS)2024研究背景在信息爆炸的时代,我们每天都要面对海量的数据和选择,这时候推荐系统就像我们的智能小助手,帮助我们在茫茫信息海洋中找到真正需要的资源。但是,传统的推荐系统模型大多
- 《Semantic communications - Principles and challenges》语义通信文献阅读与分析总结
snow每天都要好好学习
深度学习深度学习
《语义通信:原理与挑战》文献详细总结1.语义通信的概念语义通信是一种超越传统香农通信范式的全新通信模式,它关注的是信息意义的传递,而不仅仅是数据本身的准确传输。传统通信强调比特级别的准确性,而语义通信更强调信息对接收方执行特定任务的有效性。这种模式被认为是第六代(6G)无线网络的核心技术之一,能够支持包括智能交通、智能监控、视频会议、增强现实(AR)和虚拟现实(VR)在内的多种智能应用。在语义通信
- 文献管理工具Zotero超详细教程,包含各个方面
程序猿000001号
论文阅读
1、为什么要使用Zotero上面两种方式对于后期进行写作,文献查找以及文献引用的都不方便,使用文献管理软件具有以下优点:下面是目前几款常见的文献阅读软件的对比:通过上面对比,可以看出Zotero在文献管理软件中具有一定的优势,下面介绍Zotero软件的使用。2、如何将论文导入Zotero2.1通过浏览器插件在浏览器中安装zotero插件后,在浏览器右上角就能够出现一个文件夹图标,此时就可以点击该文
- Python——基于ERA5数据的饱和水汽压差(VPD)批量计算(Clausius-Clapeyron 克劳修斯-克拉伯龙关系)
雨宫芳树
算法pythonarcgis数据分析开发语言
一、前言之前我发布过基于CRU数据和Goff-Gratch公式计算VPD的博客,见下方:基于CRU数据计算VPD的博客但是,CRU数据的分辨率还是较为粗糙(0.5°×0.5°),而ERA5land数据集分辨率能很好地满足我的需求(0.1°×0.1°)。但是,ERA5land数据集并不提供水汽压和湿度变量供于下载,这导致利用Goff-Gratch公式很难进行计算。结合近期文献阅读和整理,这里提供另一
- [特殊字符]文献阅读分享:《负面情绪更吸睛?利用大型语言模型重构新闻推荐系统中的情感框架》
Sheakan
推荐系统论文阅读总结语言模型重构人工智能
论文背景在当今信息爆炸的时代,新闻推荐系统(NewsRecommenderSystems,NRS)成为用户获取新闻的重要工具。然而,新闻内容的呈现方式(即新闻框架)对用户的参与度和付费意愿有着深远的影响。随着人工智能技术的发展,大型语言模型(LLMs)逐渐被引入新闻生产过程,为新闻框架的重构提供了新的可能性。本文通过实验研究,探讨了基于LLM的情感框架重构对用户情感、参与度和付费意愿的影响。相关工
- AAAI2024论文解读|Memory-Efficient Reversible Spiking Neural Networks-water-merged
paixiaoxin
文献阅读论文合集脉冲神经网络可逆架构内存效率深度学习训练优化AAAI
论文标题Memory-EfficientReversibleSpikingNeuralNetworks内存高效可逆脉冲神经网络论文链接Memory-EfficientReversibleSpikingNeuralNetworks论文下载论文作者HongZhang,YuZhang内容简介本文提出了一种可逆脉冲神经网络(RevSNN),旨在降低脉冲神经网络(SNNs)在训练过程中对中间激活和膜电位的内
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号