- 《度五行》生活报报甲午62:不通痛苦,太通也痛苦,要健康快乐,需要通体舒畅。
YangduSam2021
220809壬寅戊申甲午,《度.生活五行》:天干土克水,水生木,木克土。地支寅申冲,寅午合。20220809,周二,兴大上海六班2512天,西交大2013上海班3212天,后TA15332天,度生活619天,今天拜访了一家有趣且当红产业的新创公司AK。AK一开始从事深海新能源储存与供电设备的研发生产制造,2年前开始做移动与家庭储能设备的研发生产制造。觉得有趣是因为这是笔者认知里用科技做降维打击的公
- 机器学习 流形数据降维:UMAP 降维算法
小嗷犬
Python机器学习#数据分析及可视化机器学习算法人工智能
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。个人主页:小嗷犬的个人主页个人网站:小嗷犬的技术小站个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。本文目录UMAP简介理论基础特点与优势应用场景在Python中使用UMAP安装umap-learn库使用UMAP可视化手写数字数据集UMAP简介UMAP(UniformManifoldApproximatio
- 用了这么多年的PCA可视化竟然是错的!!!
生信宝典
本文启发于上周开的单细胞转录组课程,本次课程由资深单细胞算法研究者戴老师主讲,深入浅出,各部分分析原理从理论到应用层面解释透彻,最新流程,最新代码,绝对值得学习。课程尚未结束,我就迫不及待向一位未能安排出时间参加此课程的老友及时安利了视频课。言归正传,介绍培训课程的一张幻灯片:很多PCA可视化结果都是不合适的。PCA或PCoA是常用的降维工具,之前有几篇文章介绍PCA的原理和可视化。一文看懂PCA
- 【机器学习】必会降维算法之:奇异值分解(SVD)
Carl_奕然
机器学习算法人工智能
奇异值分解(SVD)1、引言2、奇异值分解(SVD)2.1定义2.2应用场景2.3核心原理2.4算法公式2.5代码示例3、总结1、引言一转眼,小屌丝:鱼哥,就要到每年最开心的节日了:六一儿童节。小鱼:你有啥想法?小屌丝:想法没有,玩的地方倒是想小鱼:拉倒吧,我可不去小屌丝:确定?小鱼:看情况。小屌丝:嘿嘿,难得过节日,我们也得放松一下小鱼:正有此意。2、奇异值分解(SVD)2.1定义奇异值分解(S
- 363. 矩形区域不超过 K 的最大数值和(C语言实现)
Buaaer(>ω<)
算法学习-Leetcode动态规划算法二分查找
文章目录363.矩形区域不超过K的最大数值和题干声明方法1-暴力枚举+简单dp方法2-暴力枚举+二维数组前缀和方法3-固定边界搜索方法4-固定边界搜索+dp优化方法5-固定边界搜索+前缀和+二分查找363.矩形区域不超过K的最大数值和本题涉及内容:一/二维前缀和问题、降维问题、暴力枚举问题、dp问题、二分查找问题题干给你一个m∗nm*nm∗n的矩阵matrixmatrixmatrix和一个整数kk
- 线性判别分析 (Linear Discriminant Analysis, LDA)
ALGORITHM LOL
人工智能机器学习算法
线性判别分析(LinearDiscriminantAnalysis,LDA)通俗易懂算法线性判别分析(LinearDiscriminantAnalysis,LDA)是一种用于分类和降维的技术。其主要目的是找到一个线性变换,将数据投影到一个低维空间,使得在这个新空间中,不同类别的数据能够更好地分离。线性判别分析的核心思想LDA的基本思路是最大化类间方差(between-classvariance)与
- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 保研 比赛 利器: 用AI比赛助手降维打击数学建模
好家伙VCC
杂谈杂谈数学建模人工智能
数学建模作为一个热门但又具有挑战性的赛道,在保研、学分加分、简历增色等方面具有独特优势。近年来,随着AI技术的发展,特别是像GPT-4模型的应用,数学建模的比赛变得不再那么“艰深”。通过利用AI比赛助手,不仅可以大大提升团队效率,还能有效提高比赛获奖几率。本文将详细介绍如何通过AI比赛助手完成数学建模比赛,并结合实例展示其强大功能。一、AI比赛助手的引入1.什么是AI比赛助手?AI比赛助手是一种集
- 亦菲喊你来学机器学习(20) --PCA数据降维
方世恩
机器学习人工智能深度学习python算法sklearn
文章目录PCA数据降维一、降维二、优缺点三、参数四、实例应用1.读取文件2.分离特征和目标变量3.使用PCA进行降维4.打印特征所占百分比和具体比例5.PCA降维后的数据6.划分数据集7.训练逻辑回归模型8.评估模型性能总结PCA数据降维主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的数据降维技术,它可以在保留数据集中最重要的特征的同时,减少数据的维度。PCA
- r语言做绘制精美pcoa图_R语言高级绘图 — ggplot2
weixin_39560002
r语言做绘制精美pcoa图
2)PCA的作图PCA主成分分析,可以将高维数据进行降维处理。我们的OTU表格就是典型的高维数据,可以对其进行降维处理得到主成分PC1和PC2,然后将所有样品都分解到这两个成分方向,进行散点绘图,可以直观的看出样品间的差异。首先需要一系列的统计处理,然后用ggplot2进行绘图,过程如下:#加载需要的三个包(需要先下载,再加载)>library(ade4)>library(ggplot2)>lib
- Java中的数据降维技术:如何实现PCA和t-SNE
省赚客app开发者
javapython人工智能
Java中的数据降维技术:如何实现PCA和t-SNE大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在这篇文章中,我们将探讨如何在Java中实现数据降维技术,特别是主成分分析(PCA)和t-SNE。这两种技术在数据预处理和可视化中非常重要,它们帮助我们将高维数据转换为低维数据,保留数据的主要特征。主成分分析(PCA)主成分分析(PCA)是一种线性降维技术,用于将数据从
- 工信教考 | AI智能体应用工程师(模拟试题)
人工智能-猫猫
人工智能开源自然语言处理语言模型架构
关于AI智能体工程师的模拟试题,下面根据AI智能体工程师所需掌握的知识和技能,设计一些模拟题型的示例。这些题目旨在考察应试者在人工智能、机器学习、深度学习、算法设计、系统开发等方面的能力。一、选择题无监督学习常用于哪些任务?(单选)A.回归分析B.聚类分析C.分类预测D.序列预测答案:B解析:无监督学习常用于聚类、降维、异常检测等任务,如市场分割、数据可视化等。以下哪种激活函数常用于分类问题的输出
- 3D 场景模拟 2D 碰撞玩法的方案
长脖鹿Johnny
数学算法3d游戏游戏引擎算法几何学
目录方法概述顶点到平面的垂直投影求解最小降维OBB主成分分析(PCA)协方差矩阵求矩阵特征值Jacobi方法OBB拉伸方法对于类似《密特罗德生存恐惧》和《暗影火炬城》这样3D场景,但玩法还是2D卷轴动作平台跳跃(类银河恶魔城)的游戏,如果想要让碰撞检测更符合视觉直觉,需要采用3D碰撞体来模拟2D碰撞。本文将介绍一种实现方案。方法概述为了简化碰撞计算,原碰撞体(如武器的碰撞)只使用长方体(OBB)和
- 2024 数学建模国赛 C 题模型及算法(无废话版)
不染53
数学建模数学建模算法python
目录写在开始需要掌握的数学模型/算法评价体系/评价类问题时间序列处理数据降维聚类问题(无监督)分类问题(有监督)集成学习(Bagging/Boosting)回归问题关联分析统计学方法/统计模型智能优化算法需要掌握的Python专业库需要掌握的软件/工具写在开始本人获2023年数学建模国赛C题国家级一等奖,备赛期间专攻C题。本文总结了在备赛期间总结的模型和算法,足以应对90%国赛C题中涉及到的问题。
- 看demo学算法之 自编码器
小琳ai
算法
大家好,这里是小琳AI课堂!今天我们来聊聊自编码器。AE自编码器,全称为Autoencoder,是一种数据压缩算法,它能够通过学习输入数据的有效表示(编码)来重建输入数据(解码)。自编码器通常被用于无监督学习任务,尤其是在降维、特征学习、数据去噪等领域。下面,我将从四个不同的角度来详细解释AE自编码器。1.技术细节自编码器由两部分组成:编码器(encoder)和解码器(decoder)。编码器负责
- 6月第11编
我是何何子吖
我最终还是爱上了董宇辉的直播间,然后发现自己更应该多读点书了,小时候词不达意,长大以后是言不由衷,老师转型带货,都说是降维打,没有声嘶力歇的抢单限购,有的只是古今中外的历史穿越,浩瀚星辰、人间烟火,岁月静好。离群索居者,不是神明,便是野兽,但是我贪心,我贪恋这人间的烟火气。所以我决定留下来,于时间无涯的荒漠里,正好遇见你,轻声地说一句,哦,原来你也在这里。生活里我们该有的样子,健健康康,快快乐乐,
- 【Python机器学习】NLP词频背后的含义——隐性语义分析
zhangbin_237
Python机器学习python机器学习自然语言处理人工智能开发语言
隐性语义分析基于最古老和最常用的降维技术——奇异值分解(SVD)。SVD将一个矩阵分解成3个方阵,其中一个是对角矩阵。SVD的一个应用是求逆矩阵。一个矩阵可以分解成3个最简单的方阵,然后对这些方阵求转置后再把它们相乘,就得到了原始矩阵的逆矩阵。它为我们提供了一个对大型复杂矩阵求逆的捷径。SVD适用于桁架结构的应力和应变分析等机械工程问题,它对电气工程中的电路分析也很有用,它甚至在数据科学中被用于基
- 【深度学习】embedding的简单理解
旅途中的宽~
深度学习笔记深度学习embedding
文章目录一、简单理解二、其他通俗理解一、简单理解特征嵌入,将数据转换(降维)为固定大小的特征表示(矢量),以便于处理和计算(如求距离)。例如,针对用于说话者识别的语音信号训练的模型可以允许您将语音片段转换为数字向量,使得来自相同说话者的另一片段与原始向量具有小的距离(例如,欧几里德距离)。embedding的主要目的是对(稀疏)特征进行降维,它降维的方式可以类比为一个全连接层(没有激活函数),通过
- Python实现等距映射(ISOMAP)降维算法
闲人编程
pythonpython算法开发语言ISOMAP降维
目录Python实现等距映射(ISOMAP)降维算法的博客引言ISOMAP算法原理ISOMAP的优势与局限Python实现ISOMAP算法1.创建ISOMAP类2.在瑞士卷数据集上应用ISOMAP3.结果分析总结运行结果Python实现等距映射(ISOMAP)降维算法的博客引言在高维数据处理中,降维是一种常用的技术,它通过减少数据的维度来降低计算复杂度,同时保留数据的主要特征。在许多情况下,数据可
- 斗胆谈一谈大学对成长的思考 上篇
无道无名
为了有一个提纲的作用,我还是做一个简单的导图。嗯确实是简单。我不知道一般人上大学的时候是怎么想的,我也忘了我当日是怎么想的。所以,我们就直接进入主题吧。谈一谈我的想法。认知升维的能力我们之前看《三体》的时候,知道有一个notion叫做降维打击。它指的是攻击目标本身所处的空间维度使其降低,让目标无法在低维度空间中生存从而毁灭目标。而当它引入社会商业领域时,则代表某一方对有着全方位的碾压,所拥有技术或
- 深度学习100问7-向量降维的算法有那些
不断持续学习ing
深度学习机器学习人工智能
一、主成分分析(PCA)PCA就像你整理一堆考试成绩单。假如成绩单上有好多科目成绩,这就像一个高维向量。但有些科目成绩关系很紧密,比如数学好的同学一般物理也不错,化学也还行。那PCA就会找这些成绩单里最主要的特点,把关系近的科目合成几个新的“大科目”。这样就把原来很多科目的高维向量变成几个“大科目”的低维向量啦。二、奇异值分解(SVD)SVD呢,就好比你有一本很厚的书。书的每一页上的字可以看成一个
- 向量数据库入坑:传统文本检索方式的降维打击,使用 Faiss 实现向量语义检索
soulteary
为了不折腾而去折腾的那些事faiss向量检索语义检索文本检索搜索引擎
在上一篇文章《聊聊来自元宇宙大厂Meta的相似度检索技术Faiss》中,我们有聊到如何快速入门向量检索技术,借助MetaAI(FacebookResearch)出品的faiss实现“最基础的文本内容相似度检索工具”,初步接触到了“语义检索”这种对于传统文本检索方式具备“降维打击”的新兴技术手段。有朋友在聊天中提到,希望能够聊点更具体的,比如基于向量技术实现的语义检索到底比传统文本检索强多少,以及是
- 【机器学习】初学者经典案例(随记)
听忆.
机器学习人工智能数据挖掘深度学习语言模型
边走、边悟迟早会好一、概念机器学习是一种利用数据来改进模型性能的计算方法,属于人工智能的一个分支。它旨在让计算机系统通过经验自动改进,而不需要明确编程。类型监督学习:使用带标签的数据进行训练,包括分类(如垃圾邮件检测)和回归(如房价预测)。无监督学习:使用不带标签的数据进行训练,包括聚类(如客户细分)和降维(如主成分分析)。强化学习:通过与环境的交互学习策略,以最大化累积奖励(如AlphaGo)。
- 【机器学习】特征提取 特征降维
de-feedback
机器学习人工智能
特征工程特征工程是将原始数据转化为可以用于机器学习的数字特征,比如字典的特征提取,文档的特征提取等。字典特征提取把字典的每个唯一的键作为数据集特征的一个维度,有这个维度的就为1,没有就是0。其他相同的键,该维度的值就是其键值。这样的操作把字典样本的每一条数据转化为了矩阵,但是矩阵中含有大量的0(因为数据中的键和值有很多不同),所以称之为稀疏矩阵为了保存数据的高效,一般使用三元组表存储。保存非零数据
- 主成分分析(PCA)附Python实现
不染53
数学建模数学建模python算法
主成分分析矩阵分解特征值和特征向量特征值分解奇异值分解主成分分析(PCA)Python实现主成分分析方法(PrincipalComponentAnalysis,PCA)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,将多个变量压缩为少数几个综合指标(称为主成分),是一种使用最广泛的数据降维算法。此外,由于主成分分析独特的性质,压缩之后的主成分之间线性无关,因此
- 【机器学习】特征工程的基本概念以及LASSO回归和主成分分析优化方法
Lossya
机器学习回归人工智能算法特征工程
引言特征工程是机器学习中的一个关键步骤,它涉及到从原始数据中提取和构造新的特征,以提高模型的性能和预测能力LASSO(LeastAbsoluteShrinkageandSelectionOperator)回归是一种用于回归分析的线性模型,它通过引入L1正则化(Lasso正则化)来简化模型并减少过拟合的风险主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的降维技术
- Scikit-learn:用于数据挖掘和数据分析的简单而有效的工具,建立在 NumPy, SciPy 和 Matplotlib 上。
Jr_l
#数据科学数据挖掘scikit-learn数据分析
引言Scikit-learn是一个基于Python的机器学习库,旨在为数据挖掘和数据分析提供简单而有效的工具。它建立在强大的科学计算库之上,包括NumPy、SciPy和Matplotlib,提供了丰富的机器学习算法和工具,如分类、回归、聚类、降维、模型选择和数据预处理等。Scikit-learn的API设计简洁,使用方便,且拥有高效的实现,因此在学术研究和工业界中得到了广泛应用。无论是数据科学家还
- 鸟枪换炮,利用python3对球员做大数据降维(因子分析得分),为C罗找到合格僚机
刘悦的技术博客
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_176众所周知,尤文图斯需要一座欧冠奖杯,C罗也还想再拿一座欧冠奖杯,为自己的荣誉簙上锦上添花。意甲霸主在意甲虽然风生水起,予取予求,但是在今年欧冠1/8决赛赛场上,被法甲球队里昂所淘汰,痛定思痛,球队解雇了主教练萨里,签约名宿皮尔洛,但是要想在欧冠赛场上夺冠,这还不够,球队还需要什么?没错,需要一名强力中锋,在正印中锋伊瓜因难堪
- 阅读与写作
野草狂奔
我们写作的过程就是输入,处理,输出。没有高质量的输入就不会有高质量的输出。写作是为了沟通而不是表达。不管你写的是什么?沟通是第一位的,表达是第二位的。写作与理财可以是并在一块相辅相成的。升维学习降维打击。种瓜得瓜种豆得豆。想要得到的更多就一定要付出的更多。
- 基于极限树特征递归消除和LightGBM的异常检测模型
宋罗世家技术屋
信息资源管理与发展专栏算法python
摘要入侵检测数据维数大、数据样本不均衡、数据集分散性大的问题严重影响分类性能,为了解决该问题,文章提出基于极限随机树的特征递归消除(ExtraTrees-RecursiveFeatureElimination,ET-RFE)和LightGBM(LGBM)的入侵检测方法。首先对网络数据进行独热编码重构,在数据级层面均衡少量样本的攻击类别;其次,使用基于ET-RFE对流量特征进行降维处理,寻找含有信息
- Maven
Array_06
eclipsejdkmaven
Maven
Maven是基于项目对象模型(POM), 信息来管理项目的构建,报告和文档的软件项目管理工具。
Maven 除了以程序构建能力为特色之外,还提供高级项目管理工具。由于 Maven 的缺省构建规则有较高的可重用性,所以常常用两三行 Maven 构建脚本就可以构建简单的项目。由于 Maven 的面向项目的方法,许多 Apache Jakarta 项目发文时使用 Maven,而且公司
- ibatis的queyrForList和queryForMap区别
bijian1013
javaibatis
一.说明
iBatis的返回值参数类型也有种:resultMap与resultClass,这两种类型的选择可以用两句话说明之:
1.当结果集列名和类的属性名完全相对应的时候,则可直接用resultClass直接指定查询结果类
- LeetCode[位运算] - #191 计算汉明权重
Cwind
java位运算LeetCodeAlgorithm题解
原题链接:#191 Number of 1 Bits
要求:
写一个函数,以一个无符号整数为参数,返回其汉明权重。例如,‘11’的二进制表示为'00000000000000000000000000001011', 故函数应当返回3。
汉明权重:指一个字符串中非零字符的个数;对于二进制串,即其中‘1’的个数。
难度:简单
分析:
将十进制参数转换为二进制,然后计算其中1的个数即可。
“
- 浅谈java类与对象
15700786134
java
java是一门面向对象的编程语言,类与对象是其最基本的概念。所谓对象,就是一个个具体的物体,一个人,一台电脑,都是对象。而类,就是对象的一种抽象,是多个对象具有的共性的一种集合,其中包含了属性与方法,就是属于该类的对象所具有的共性。当一个类创建了对象,这个对象就拥有了该类全部的属性,方法。相比于结构化的编程思路,面向对象更适用于人的思维
- linux下双网卡同一个IP
被触发
linux
转自:
http://q2482696735.blog.163.com/blog/static/250606077201569029441/
由于需要一台机器有两个网卡,开始时设置在同一个网段的IP,发现数据总是从一个网卡发出,而另一个网卡上没有数据流动。网上找了下,发现相同的问题不少:
一、
关于双网卡设置同一网段IP然后连接交换机的时候出现的奇怪现象。当时没有怎么思考、以为是生成树
- 安卓按主页键隐藏程序之后无法再次打开
肆无忌惮_
安卓
遇到一个奇怪的问题,当SplashActivity跳转到MainActivity之后,按主页键,再去打开程序,程序没法再打开(闪一下),结束任务再开也是这样,只能卸载了再重装。而且每次在Log里都打印了这句话"进入主程序"。后来发现是必须跳转之后再finish掉SplashActivity
本来代码:
// 销毁这个Activity
fin
- 通过cookie保存并读取用户登录信息实例
知了ing
JavaScripthtml
通过cookie的getCookies()方法可获取所有cookie对象的集合;通过getName()方法可以获取指定的名称的cookie;通过getValue()方法获取到cookie对象的值。另外,将一个cookie对象发送到客户端,使用response对象的addCookie()方法。
下面通过cookie保存并读取用户登录信息的例子加深一下理解。
(1)创建index.jsp文件。在改
- JAVA 对象池
矮蛋蛋
javaObjectPool
原文地址:
http://www.blogjava.net/baoyaer/articles/218460.html
Jakarta对象池
☆为什么使用对象池
恰当地使用对象池化技术,可以有效地减少对象生成和初始化时的消耗,提高系统的运行效率。Jakarta Commons Pool组件提供了一整套用于实现对象池化
- ArrayList根据条件+for循环批量删除的方法
alleni123
java
场景如下:
ArrayList<Obj> list
Obj-> createTime, sid.
现在要根据obj的createTime来进行定期清理。(释放内存)
-------------------------
首先想到的方法就是
for(Obj o:list){
if(o.createTime-currentT>xxx){
- 阿里巴巴“耕地宝”大战各种宝
百合不是茶
平台战略
“耕地保”平台是阿里巴巴和安徽农民共同推出的一个 “首个互联网定制私人农场”,“耕地宝”由阿里巴巴投入一亿 ,主要是用来进行农业方面,将农民手中的散地集中起来 不仅加大农民集体在土地上面的话语权,还增加了土地的流通与 利用率,提高了土地的产量,有利于大规模的产业化的高科技农业的 发展,阿里在农业上的探索将会引起新一轮的产业调整,但是集体化之后农民的个体的话语权 将更少,国家应出台相应的法律法规保护
- Spring注入有继承关系的类(1)
bijian1013
javaspring
一个类一个类的注入
1.AClass类
package com.bijian.spring.test2;
public class AClass {
String a;
String b;
public String getA() {
return a;
}
public void setA(Strin
- 30岁转型期你能否成为成功人士
bijian1013
成功
很多人由于年轻时走了弯路,到了30岁一事无成,这样的例子大有人在。但同样也有一些人,整个职业生涯都发展得很优秀,到了30岁已经成为职场的精英阶层。由于做猎头的原因,我们接触很多30岁左右的经理人,发现他们在职业发展道路上往往有很多致命的问题。在30岁之前,他们的职业生涯表现很优秀,但从30岁到40岁这一段,很多人
- [Velocity三]基于Servlet+Velocity的web应用
bit1129
velocity
什么是VelocityViewServlet
使用org.apache.velocity.tools.view.VelocityViewServlet可以将Velocity集成到基于Servlet的web应用中,以Servlet+Velocity的方式实现web应用
Servlet + Velocity的一般步骤
1.自定义Servlet,实现VelocityViewServl
- 【Kafka十二】关于Kafka是一个Commit Log Service
bit1129
service
Kafka is a distributed, partitioned, replicated commit log service.这里的commit log如何理解?
A message is considered "committed" when all in sync replicas for that partition have applied i
- NGINX + LUA实现复杂的控制
ronin47
lua nginx 控制
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-14.输入一个已经按升序排序过的数组和一个数字, 在数组中查找两个数,使得它们的和正好是输入的那个数字
bylijinnan
java
public class TwoElementEqualSum {
/**
* 第 14 题:
题目:输入一个已经按升序排序过的数组和一个数字,
在数组中查找两个数,使得它们的和正好是输入的那个数字。
要求时间复杂度是 O(n) 。如果有多对数字的和等于输入的数字,输出任意一对即可。
例如输入数组 1 、 2 、 4 、 7 、 11 、 15 和数字 15 。由于
- Netty源码学习-HttpChunkAggregator-HttpRequestEncoder-HttpResponseDecoder
bylijinnan
javanetty
今天看Netty如何实现一个Http Server
org.jboss.netty.example.http.file.HttpStaticFileServerPipelineFactory:
pipeline.addLast("decoder", new HttpRequestDecoder());
pipeline.addLast(&quo
- java敏感词过虑-基于多叉树原理
cngolon
违禁词过虑替换违禁词敏感词过虑多叉树
基于多叉树的敏感词、关键词过滤的工具包,用于java中的敏感词过滤
1、工具包自带敏感词词库,第一次调用时读入词库,故第一次调用时间可能较长,在类加载后普通pc机上html过滤5000字在80毫秒左右,纯文本35毫秒左右。
2、如需自定义词库,将jar包考入WEB-INF工程的lib目录,在WEB-INF/classes目录下建一个
utf-8的words.dict文本文件,
- 多线程知识
cuishikuan
多线程
T1,T2,T3三个线程工作顺序,按照T1,T2,T3依次进行
public class T1 implements Runnable{
@Override
 
- spring整合activemq
dalan_123
java spring jms
整合spring和activemq需要搞清楚如下的东东1、ConnectionFactory分: a、spring管理连接到activemq服务器的管理ConnectionFactory也即是所谓产生到jms服务器的链接 b、真正产生到JMS服务器链接的ConnectionFactory还得
- MySQL时间字段究竟使用INT还是DateTime?
dcj3sjt126com
mysql
环境:Windows XPPHP Version 5.2.9MySQL Server 5.1
第一步、创建一个表date_test(非定长、int时间)
CREATE TABLE `test`.`date_test` (`id` INT NOT NULL AUTO_INCREMENT ,`start_time` INT NOT NULL ,`some_content`
- Parcel: unable to marshal value
dcj3sjt126com
marshal
在两个activity直接传递List<xxInfo>时,出现Parcel: unable to marshal value异常。 在MainActivity页面(MainActivity页面向NextActivity页面传递一个List<xxInfo>): Intent intent = new Intent(this, Next
- linux进程的查看上(ps)
eksliang
linux pslinux ps -llinux ps aux
ps:将某个时间点的进程运行情况选取下来
转载请出自出处:http://eksliang.iteye.com/admin/blogs/2119469
http://eksliang.iteye.com
ps 这个命令的man page 不是很好查阅,因为很多不同的Unix都使用这儿ps来查阅进程的状态,为了要符合不同版本的需求,所以这个
- 为什么第三方应用能早于System的app启动
gqdy365
System
Android应用的启动顺序网上有一大堆资料可以查阅了,这里就不细述了,这里不阐述ROM启动还有bootloader,软件启动的大致流程应该是启动kernel -> 运行servicemanager 把一些native的服务用命令启动起来(包括wifi, power, rild, surfaceflinger, mediaserver等等)-> 启动Dalivk中的第一个进程Zygot
- App Framework发送JSONP请求(3)
hw1287789687
jsonp跨域请求发送jsonpajax请求越狱请求
App Framework 中如何发送JSONP请求呢?
使用jsonp,详情请参考:http://json-p.org/
如何发送Ajax请求呢?
(1)登录
/***
* 会员登录
* @param username
* @param password
*/
var user_login=function(username,password){
// aler
- 发福利,整理了一份关于“资源汇总”的汇总
justjavac
资源
觉得有用的话,可以去github关注:https://github.com/justjavac/awesome-awesomeness-zh_CN 通用
free-programming-books-zh_CN 免费的计算机编程类中文书籍
精彩博客集合 hacke2/hacke2.github.io#2
ResumeSample 程序员简历
- 用 Java 技术创建 RESTful Web 服务
macroli
java编程WebREST
转载:http://www.ibm.com/developerworks/cn/web/wa-jaxrs/
JAX-RS (JSR-311) 【 Java API for RESTful Web Services 】是一种 Java™ API,可使 Java Restful 服务的开发变得迅速而轻松。这个 API 提供了一种基于注释的模型来描述分布式资源。注释被用来提供资源的位
- CentOS6.5-x86_64位下oracle11g的安装详细步骤及注意事项
超声波
oraclelinux
前言:
这两天项目要上线了,由我负责往服务器部署整个项目,因此首先要往服务器安装oracle,服务器本身是CentOS6.5的64位系统,安装的数据库版本是11g,在整个的安装过程中碰到很多的坑,不过最后还是通过各种途径解决并成功装上了。转别写篇博客来记录完整的安装过程以及在整个过程中的注意事项。希望对以后那些刚刚接触的菜鸟们能起到一定的帮助作用。
安装过程中可能遇到的问题(注
- HttpClient 4.3 设置keeplive 和 timeout 的方法
supben
httpclient
ConnectionKeepAliveStrategy kaStrategy = new DefaultConnectionKeepAliveStrategy() {
@Override
public long getKeepAliveDuration(HttpResponse response, HttpContext context) {
long keepAlive
- Spring 4.2新特性-@Import注解的升级
wiselyman
spring 4
3.1 @Import
@Import注解在4.2之前只支持导入配置类
在4.2,@Import注解支持导入普通的java类,并将其声明成一个bean
3.2 示例
演示java类
package com.wisely.spring4_2.imp;
public class DemoService {
public void doSomethin