PyTorch自用笔记(第五周-实战1)

PyTorch自用笔记(第五周)

    • 9.6 Module模块
    • 9.7 数据增强
  • 十、CIFAR10与ResNet实战
    • 10.1 CIFAR10数据集
    • 10.2 Lenet-5实战
    • 10.3 ResNet实战

9.6 Module模块

1.所有网络层次类的一个父类
如:
nn.Linear
nn.BatchNorm2d
nn.Conv2d
自定义类

class MyLinear(nn.Module):
	def __init__(self, inp, outp):
		super(MyLinear, self).__init__()
		
		#requires_grad = True
		self.w = nn.Parameter(torch.randn(outp, inp))
		self.b = nn.Parameter(torch.randn(outp))
	
	def forward(self, x):
		x = x @ self.w.t() + self.b
		return x

2.嵌套

优点/功能:
1.大量现成层次的接口
2.Container

nn.Sequential  # 按顺序执行

3.参数管理
4.children:直系亲属
modules:非直系亲属
5.to(device) # cpu/gpu/cuda
6.保存和加载

torch.save(net.state_dict(), 'ckpt.mdl')  # 保存当前状态到ckpt.mdl文件
net.load_state_dict(torch.load('ckpt.mdl'))  # 加载train好的状态

7.train/test

net.train()
net.eval()

8.自定义类

# Flatten
class Flatten(nn.Module):
	def __init__(self):
		super(Flatten, self).__init()

	def forward(self, input):
		return input.view(input, size(0), -1)

class TestNet(nn.Module):
	
	def __init__(self):
		super(TestNet, self).__init__()
		self.net = nn.Sequential(nn.Conv2d(1, 16, stride=1, padding=1),
								 nn.MaxPool2d(2, 2),
								 Flatten(),
								 nn.Linear(1*14*14, 10))
				
	def forward(self, x):
		return self.net(x)

# 自定义线性层
class MyLinear(nn.Module):
	
	def __init__(self, inp, outp):
		super(MyLinear, self).__init__()

		#requires_grad = True
		self.w = nn.Parameter(torch.randn(outp, inp))
		self.b = nn.Parameter(torch.randn(outp))

	def forward(self, x)
		x = x @ self.w.t() + self.b
		return x

9.7 数据增强

由于神经网络需要大量的数据,从已有的数据中心扩充出更多的数据供网络进行学习
1.减少参数量
2.正则化
3.数据增强
常用数据增强的手段:
1.翻转

transform.RandomHorizontalFlip()  # 水平翻转
transforms.RandomVerticalFlip()  # 垂直翻转
# Random表示随机进行翻转

2.旋转

transforms.RandomRotation(15)  # 旋转15°
transforms.RandomTotation([90, 180, 270])  # 随机旋转90/180/270

3.随机移动和裁剪

# scale缩放
transforms.Resize([32, 32])
# 部分裁剪
transforms.RandomCrop([28, 28])

transforms.Compose([, , ,])  # 类似nn.Sequential

4.噪声
5.GAN(对抗生成网络)

十、CIFAR10与ResNet实战

10.1 CIFAR10数据集

CIFAR-10数据集由10个类的60000个32x32彩色图像组成,每个类有6000个图像。有50000个训练图像和10000个测试图像。
数据集分为五个训练批次和一个测试批次,每个批次有10000个图像。测试批次包含来自每个类别的恰好1000个随机选择的图像。训练批次以随机顺序包含剩余图像,但一些训练批次可能包含来自一个类别的图像比另一个更多。总体来说,五个训练集之和包含来自每个类的正好5000张图像。
以下是数据集中的类,以及来自每个类的10个随机图像:
PyTorch自用笔记(第五周-实战1)_第1张图片
这些类完全相互排斥;汽车和卡车之间没有重叠。

在pycharm中加载数据集如果速度慢的话除了代理下载之外,还可尝试以下方法:
1.将数据集下载到本地,并用浏览器打开其路径
2.Ctrl+鼠标左键点击数据集名字进入数据集的.py文件中,找到url
3.将url修改为’file:///本地数据集路径’即可
4.注:运行download时浏览器不要关闭

10.2 Lenet-5实战

首先根据论文模型创建lenet-5

import torch
from torch import nn
# from torch.nn import functional as F


class Lenet5(nn.Module):
    """
    for cifar10 dataset
    """
    def __init__(self):
        super(Lenet5, self).__init__()

        self.conv_unit = nn.Sequential(
            # x:[b, 3, 32, 32] => [b, 6, ]
            nn.Conv2d(3, 6, kernel_size=5, stride=1, padding=0),
            nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
            # 第二个卷积层
            nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0),
            nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
            # 需要打平操作
        )
        # flatten
        # fc unit
        self.fc_unit = nn.Sequential(
            nn.Linear(16*5*5, 120),
            nn.ReLU(),
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, 10)
        )

        # [b, 3, 32, 32]
        tmp = torch.randn(2, 3, 32, 32)
        out = self.conv_unit(tmp)
        # [b, 16, 5, 5]
        print('conv out:', out.shape)
        # use Cross Entropy Loss
        # self.criteon = nn.MSELoss()
        # 分类用CEL;回归用MSE
        self.criteon = nn.CrossEntropyLoss()

    def forward(self, x):
        """

        :param x: [b, 3, 32, 32]
        :return:
        """
        batchsz = x.size(0)
        # [b, 3, 32, 32] => [b, 16, 5, 5]
        x = self.conv_unit(x)
        # [b, 16, 5, 5] => [b, 16*5*5]
        x = x.view(batchsz, 16*5*5)  # -1;flatten
        # [b, 16*5*5] => [b, 10]
        logits = self.fc_unit(x)  # before softmax

        # [b, 10]
        # pred = F.softmax(logits, dim=1)
        # loss = self.criteon(logits, y)
        return logits


def main():

    net = Lenet5()

    tmp = torch.randn(2, 3, 32, 32)
    out = net(tmp)
    # [b, 16, 5, 5]
    print('lenet out:', out.shape)


if __name__ == '__main__':
    main()

加载数据集训练模型并计算精度

import torch
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from torch import nn, optim
from lenet5 import Lenet5


def main():
    batchsz = 64

    cifar_train = datasets.CIFAR10('cifar', True, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor()
    ]), download=False)
    cifar_train = DataLoader(cifar_train, batch_size=batchsz, shuffle=True)

    cifar_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor()
    ]), download=True)
    cifar_test = DataLoader(cifar_test, batch_size=batchsz, shuffle=True)

    x, label = iter(cifar_train).next()  # 迭代器
    print('x:', x.shape, 'label:', label.shape)

    device = torch.device('cuda')
    model = Lenet5().to(device)
    criteon = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    print(model)

    for epoch in range(1000):

        model.train()
        for batchidx, (x, label) in enumerate(cifar_train):
            # [b, 3, 32, 32]
            # [b]
            x, label = x.to(device), label.to(device)

            logits = model(x)  # forward
            # logits:[b, 10]
            # label:[b]
            # loss:tensor scalar
            loss = criteon(logits, label)

            # backprop
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        #
        print(epoch, loss.item())

        model.eval()
        with torch.no_grad():
            # test
            total_correct = 0
            total_num = 0
            for x, label in cifar_test:
                #
                #
                x, label = x.to(device), label.to(device)

                # [b, 10]
                logits = model(x)
                # [b]
                pred = logits.argmax(dim=1)
                # [b] vs [b] => scalar tensor
                total_correct += torch.eq(pred, label).float().sum().item()
                total_num += x.size(0)

            acc = total_correct / total_num
            print(epoch, acc)


if __name__ == '__main__':
    main()

运行结果:
PyTorch自用笔记(第五周-实战1)_第2张图片

10.3 ResNet实战

注:这里的残差块并未严格按照论文中的实现,而是经过了微调
resnet.py

import torch
from torch import nn
from torch.nn import functional as F


class ResBlk(nn.Module):
    """
    resnet block
    """

    def __init__(self, ch_in, ch_out, stride=1):
        """
        :param ch_in:
        :param ch_out:
        """
        super(ResBlk, self).__init__()

        self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
        self.bn1 = nn.BatchNorm2d(ch_out)
        self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(ch_out)

        self.extra = nn.Sequential()
        if ch_out != ch_in:
            # [b, ch_in, h, w] => [b, ch_in, h, w]
            self.extra = nn.Sequential(
                nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
                nn.BatchNorm2d(ch_out)
            )

    def forward(self, x):
        """

        :param x: [b, ch, h, w]
        :return:
        """
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        # short cut
        # extra module:[b, ch_in, h, w] => [b, ch_in, h, w]
        # element-wise add:[b, ch_in, h, w] with [b, ch_out, h, w]
        out = self.extra(x) + out

        return out


class ResNet18(nn.Module):

    def __init__(self):
        super(ResNet18, self).__init__()

        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0),
            nn.BatchNorm2d(64)
        )
        # followed 4 blocks
        # [b, 64, h, w] => [b, 128, h, w]
        self.blk1 = ResBlk(64, 128, stride=2)
        # [b, 128, h, w] => [b, 256, h, w]
        self.blk2 = ResBlk(128, 256, stride=2)
        # [b, 256, h, w] => [b, 512, h, w]
        self.blk3 = ResBlk(256, 512, stride=2)
        # 
        self.blk4 = ResBlk(512, 512, stride=2)  # 1024

        self.outlayer = nn.Linear(512*1*1, 10)

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = F.relu(self.conv1(x))

        # [b, 64, h, w] => [b, 1024, h, w]
        x = self.blk1(x)
        x = self.blk2(x)
        x = self.blk3(x)
        x = self.blk4(x)

        # print('after conv:', x.shape)  # [b, 512, 2, 2]
        # [b, 512, h, 2] => [b, 512, 1, 1]
        x = F.adaptive_avg_pool2d(x, [1, 1])
        # print('after pool', x.shape)
        x = x.view(x.size(0), -1)
        x = self.outlayer(x)

        return x


def main():
    blk = ResBlk(64, 128, stride=2)
    tmp = torch.randn(2, 64, 16, 16)
    out = blk(tmp)
    print('block:', out.shape)

    x = torch.randn(2, 3, 32, 32)
    model = ResNet18()
    out = model(x)
    print('renet:', out.shape)


if __name__ == '__main__':
    main()

main.py

import torch
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from torch import nn, optim
# from lenet5 import Lenet5
from resnet import ResNet18


def main():
    batchsz = 32

    cifar_train = datasets.CIFAR10('cifar', True, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor()
    ]), download=False)
    cifar_train = DataLoader(cifar_train, batch_size=batchsz, shuffle=True)

    cifar_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor(),
        # resnet
        # transforms.RandomRotation
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ]), download=True)
    cifar_test = DataLoader(cifar_test, batch_size=batchsz, shuffle=True)

    x, label = iter(cifar_train).next()  # 迭代器
    print('x:', x.shape, 'label:', label.shape)

    device = torch.device('cuda')
    # model = Lenet5().to(device)
    model = ResNet18().to(device)

    criteon = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    print(model)

    for epoch in range(1000):

        model.train()
        for batchidx, (x, label) in enumerate(cifar_train):
            # [b, 3, 32, 32]
            # [b]
            x, label = x.to(device), label.to(device)

            logits = model(x)  # forward
            # logits:[b, 10]
            # label:[b]
            # loss:tensor scalar
            loss = criteon(logits, label)

            # backprop
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        #
        print(epoch, loss.item())

        model.eval()
        with torch.no_grad():
            # test
            total_correct = 0
            total_num = 0
            for x, label in cifar_test:
                #
                #
                x, label = x.to(device), label.to(device)

                # [b, 10]
                logits = model(x)
                # [b]
                pred = logits.argmax(dim=1)
                # [b] vs [b] => scalar tensor
                total_correct += torch.eq(pred, label).float().sum().item()
                total_num += x.size(0)

            acc = total_correct / total_num
            print(epoch, acc)


if __name__ == '__main__':
    main()

运行结果:
PyTorch自用笔记(第五周-实战1)_第3张图片
PyTorch自用笔记(第五周-实战1)_第4张图片

你可能感兴趣的:(笔记)