层次分析法用于解决评价类问题。
层次分析法步骤:
1.分析题目得到目标、方案、准则并绘制层次结构图。其中目标、方案由题目给出,准则由搜索相关论文或者其他资料得到。
推荐搜索引擎:虫部落快搜。
推荐绘图软件:亿图图示、Visio、ProcessOn(在线)。
2.构造判断矩阵并对判断矩阵进行一致性检验,一致性检验不通过,需要修改判断矩阵。
3.根据判断矩阵计算权重并计算各方案的权重选择最佳方案实现目标。
例:甲计划外出旅游,备选地点有苏杭、北戴河与桂林。请你确定评价指标、形成评价体系来为甲选择最佳的方案。
1.目标:选择旅游地,方案:苏杭、北戴河与桂林,(搜索整理得到)准则:景色、花费、居住、饮食、交通。
(2)构造准则的判断矩阵。其中判断矩阵由专家根据评价标准填写(由自己根据评价标准填写)。
判断矩阵特点:
1)aij 表示的意义是,与指标相比,的重要程度。
2)当i=j时,两个指标相同,因此同等重要记为1,这就解释了主对角线 元素为1。
3)aij0且满足aij * aji=1 (我们称满足这一条件的矩阵为正互反矩阵)。
对各判断矩阵进行一致性检验,一致性检验不通过,需要修改判断矩阵。
若矩阵中每个元素 aij > 0 且满足 aij * aji = 1 ,则我们称该矩阵为正互反矩阵。
若正互反矩阵满足 aij * ajk = aik,则我们称其为一致矩阵。即一致矩阵各行(各列)成比例。
代码如下:
%% 读入判断矩阵
A = [1 1 4 1/3 3;
1 1 4 1/3 3;
1/4 1/4 1 1/3 1/2;
3 3 3 1 3;
1/3 1/3 2 1/3 1]; %准则判断矩阵
n = size(A,1);
[V,D] = eig(A); %V是特征向量, D是由特征值构成的对角矩阵(除了对角线元素外,其余位置元素全为0)
Max_eig = max(max(D)); %也可以写成max(D(:))
CI = (Max_eig-n)/(n-1);
RI = [0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];
CR = CI/RI(n);
if CR < 0.10
disp('判断矩阵通过一致性检验');
else
disp('判断矩阵未通过一致性检验,需要修改判断矩阵');
end
3.计算权重方法:算数平均法、几何平均法和特征值法。
代码如下
%% 方法一:算数平均数法求权重
SUM_A = sum(A);
SUM_A = repmat(SUM_A,n,1);
Stand_A = A ./ SUM_A;
w = sum(Stand_A,2) ./ n;
%% 方法二:几何平均法求权重
Product_A = prod(A,2);
Product_n_A = prod .^(1/n) ;
w = Product_n_A ./ (sum(Product_n_A));
%% 方法三:特征值法求权重
[V,D] = eig(A);
Max_eig = sum(sum(D));
[r,c] = find(D == Max_eig,1);
w = V(:,c) ./ sum(V(:,c));
利用EXCEL计算各方案得分。
要点: F4可以锁定单元格。
各方案权重如下
选择权重最大的方案为桂林。
层次分析法局限性:评价的决策层不能太多,太多的话n会很大,判断矩阵和一致矩阵差异可能会很大。
优化后完整代码如下
%% 注意:在论文写作中,应该先对判断矩阵进行一致性检验,然后再计算权重,因为只有判断矩阵通过了一致性检验,其权重才是有意义的。
%% 在下面的代码中,我们先计算了权重,然后再进行了一致性检验,这是为了顺应计算过程,事实上在逻辑上是说不过去的。
%% 因此大家自己写论文中如果用到了层次分析法,一定要先对判断矩阵进行一致性检验。
%% 而且要说明的是,只有非一致矩阵的判断矩阵才需要进行一致性检验。
%% 如果你的判断矩阵本身就是一个一致矩阵,那么就没有必要进行一致性检验。
% 在每一行的语句后面加上分号(一定要是英文的哦;中文的长这个样子;)表示不显示运行结果
% 多行注释:选中要注释的若干语句,快捷键Ctrl+R
% 取消注释:选中要取消注释的语句,快捷键Ctrl+T
disp('请输入判断矩阵A') %matlab中disp()就是屏幕输出函数,类似于c语言中的printf()函数
% 注意,disp函数比较特殊,这里可要分号,可不要分号哦
A=input('A=');
% 这里输入的就是我们的判断矩阵,其为n阶方阵(行数和列数相同)
% [1 3 1/3 1/3 1 1/3;1/3 1 1/4 1/5 1 1/5;3 4 1 1 2 3;3 5 1 1 2 1;1 1 1/2 1/2 1 1;3 5 1/3 1 1 1]
% [1 1 4 1/3 3;1 1 4 1/3 3;1/4 1/4 1 1/3 1/2;3 3 3 1 3;1/3 1/3 2 1/3 1]
% 在开始下面正式的步骤之前,我们有必要检验下A是否因为粗心而输入有误
ERROR = 0; % 默认输入是没有错误的
%(1)检查矩阵A的维数是否不大于1或不是方阵
[r,c]=size(A);
%size(A)函数是用来求矩阵的大小的,返回一个行向量,第一个元素是矩阵的行数,第二个元素是矩阵的列数
%[r,c]=size(A) %将矩阵A的行数返回到第一个输出变量r,将矩阵的列数返回到第二个输出变量c
if r ~= c || r <= 1
% 注意哦,不等号是 ~= (~是键盘Tab上面那个键,要和Shift键同时按才会出来),别和C语言里面的!=搞混了
% ||表示逻辑运算符‘或’(在键盘Enter上面,也要和Shift键一起按) 逻辑运算符且是 && (&读and,连接符号,是and的缩写。 )
ERROR = 1;
end
% Matlab的判断语句,if所在的行不需要冒号,语句的最后一定要以end结尾 ;中间的语句要注意缩进。
%(2)检验是否为正互反矩阵 a_ij > 0 且 a_ij * a_ji = 1
if ERROR == 0
[n,n] = size(A);
% 因为我们的判断矩阵A是一个非零方阵,所以这里的r和c相同,我们可以就用同一个字母n表示
% 判断是否有元素小于0
% for i = 1:n
% for j = 1:n
% if A(i,j)<=0
% ERROR = 2;
% end
% end
% end
if sum(sum(A <= 0)) > 0
ERROR = 2;
end
end
%顺便检验n是否超过了15,因为RI向量为15维
if ERROR == 0
if n > 15
ERROR = 3;
end
end
if ERROR == 0
% 判断 a_ij * a_ji = 1 是否成立
if sum(sum(A' .* A ~= ones(n))) > 0
ERROR = 4;
end
% A' 表示求出 A 的转置矩阵,即将a_ij和a_ji互换位置
% ones(n)函数生成一个n*n的全为1的方阵, zeros(n)函数生成一个n*n的全为0的方阵
% ones(m,n)函数生成一个m*n的全为1的矩阵
% MATLAB在矩阵的运算中,“/”号和“*”号代表矩阵之间的乘法与除法,对应元素之间的乘除法需要使用“./”和“.*”
% 如果a_ij * a_ji = 1 满足, 那么A和A'对应元素相乘应该为1
end
if ERROR == 0
% % % % % % % % % % % % %方法1: 算术平均法求权重% % % % % % % % % % % % %
% 第一步:将判断矩阵按照列归一化(每一个元素除以其所在列的和)
% 第二步:将归一化的各列相加
% 第三步:将相加后的向量除以n即可得到权重向量
Sum_A = sum(A);
% matlab中的sum函数的用法
% a=sum(x);%按列求和
% a=sum(x,2);%按行求和
% a=sum(x(:));%对整个矩阵求和
% % 基础:matlab中如何提取矩阵中指定位置的元素?
% % (1)取指定行和列的一个元素(输出的是一个值)
% % A(2,1) A(3,2)
% % (2)取指定的某一行的全部元素(输出的是一个行向量)
% % A(2,:) A(5,:)
% % (3)取指定的某一列的全部元素(输出的是一个列向量)
% % A(:,1) A(:,3)
% % (4)取指定的某些行的全部元素(输出的是一个矩阵)
% % A([2,5],:) 只取第二行和第五行(一共2行)
% % A(2:5,:) 取第二行到第五行(一共4行)
% % (5)取全部元素(按列拼接的,最终输出的是一个列向量)
% % A(:)
SUM_A = repmat(Sum_A,n,1);
% B = repmat(A,m,n):将矩阵A复制m×n块,即把A作为B的元素,B由m×n个A平铺而成。
% 另外一种替代的方法如下:
% SUM_A = [];
% for i = 1:n %循环哦,不需要加冒号,这里表示循环n次
% SUM_A = [SUM_A;Sum_A];
% end
Stand_A = A ./ SUM_A;
% MATLAB在矩阵的运算中,“*”号和“/”号代表矩阵之间的乘法与除法,对应元素之间的乘除法需要使用“./”和“.*”
% 这里我们直接将两个矩阵对应的元素相除即可
disp('算术平均法求权重的结果为:');
disp(sum(Stand_A,2) / n)
% 首先对标准化后的矩阵按照行求和,得到一个列向量,然后再将这个列向量的每个元素同时除以n即可(注意这里也可以用./哦)
% % % % % % % % % % % % %方法2: 几何平均法求权重% % % % % % % % % % % % %
% 第一步:将A的元素按照行相乘得到一个新的列向量
Prduct_A = prod(A,2);
% prod函数和sum函数类似,一个用于乘,一个用于加
% 第二步:将新的向量的每个分量开n次方
Prduct_n_A = Prduct_A .^ (1/n);
% 这里对元素操作,因此要加.号哦。 ^符号表示乘方哦 这里是开n次方,所以我们等价求1/n次方
% 第三步:对该列向量进行归一化即可得到权重向量
% 将这个列向量中的每一个元素除以这一个向量的和即可
disp('几何平均法求权重的结果为:');
disp(Prduct_n_A ./ sum(Prduct_n_A))
% % % % % % % % % % % % %方法3: 特征值法求权重% % % % % % % % % % % % %
% 计算矩阵A的特征值和特征向量的函数是eig(A),其中最常用的两个用法:
% (1)E=eig(A):求矩阵A的全部特征值,构成向量E。
% (2)[V,D]=eig(A):求矩阵A的全部特征值,构成对角阵D,并求A的特征向量构成V的列向量。(V的每一列都是D中与之相同列的特征值的特征向量)
[V,D] = eig(A); %V是特征向量, D是由特征值构成的对角矩阵(除了对角线元素外,其余位置元素全为0)
Max_eig = max(max(D)); %也可以写成max(D(:))哦~
% 那么怎么找到最大特征值所在的位置了? 需要用到find函数,它可以用来返回向量或者矩阵中不为0的元素的位置索引。
% 下面例子来自博客:https://www.cnblogs.com/anzhiwu815/p/5907033.html
% 关于find函数的更加深入的用法可参考原文
% >> X = [1 0 4 -3 0 0 0 8 6];
% >> ind = find(X)
% ind =
% 1 3 4 8 9
% 其有多种用法,比如返回前2个不为0的元素的位置:
% >> ind = find(X,2)
% >> ind =
% 1 3
%若X是一个矩阵,索引该如何返回呢?
% >> X = [1 -3 0;0 0 8;4 0 6]
% X =
% 1 -3 0
% 0 0 8
% 4 0 6
% >> ind = find(X)
% ind =
% 1
% 3
% 4
% 8
% 9
% 这是因为在Matlab在存储矩阵时,是一列一列存储的,我们可以做一下验证:
% >> X(4)
% ans =
% -3
% 假如你需要按照行列的信息输出该怎么办呢?
% [r,c] = find(X)
% r =
% 1
% 3
% 1
% 2
% 3
% c =
% 1
% 1
% 2
% 3
% 3
% [r,c] = find(X,1) %只找第一个非0元素
% r =
% 1
% c =
% 1
% 那么问题来了,我们要得到最大特征值的位置,就需要将包含所有特征值的这个对角矩阵D中,不等于最大特征值的位置全变为0
% 这时候可以用到矩阵与常数的大小判断运算,共有三种运算符:大于> ;小于< ;等于 == (一个等号表示赋值;两个等号表示判断)
% 例如:A > 2 会生成一个和A相同大小的矩阵,矩阵元素要么为0,要么为1(A中每个元素和2比较,如果大于2则为1,否则为0)
[r,c]=find(D == Max_eig , 1);
% 找到D中第一个与最大特征值相等的元素的位置,记录它的行和列。
disp('特征值法求权重的结果为:');
disp( V(:,c) ./ sum(V(:,c)) )
% 我们先根据上面找到的最大特征值的列数c找到对应的特征向量,然后再进行标准化。
% % % % % % % % % % % % %下面是计算一致性比例CR的环节% % % % % % % % % % % % %
% 当CR<0.10时,我们认为判断矩阵的一致性可以接受;否则应对其进行修正。
CI = (Max_eig - n) / (n-1);
RI=[0 0.00001 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59]; %注意哦,这里的RI最多支持 n = 15
% 这里n=2时,一定是一致矩阵,所以CI = 0,我们为了避免分母为0,将这里的第二个元素改为了很接近0的正数
CR=CI/RI(n);
disp('一致性指标CI=');disp(CI);
disp('一致性比例CR=');disp(CR);
if CR<0.10
disp('因为CR<0.10,所以该判断矩阵A的一致性可以接受!');
else
disp('注意:CR >= 0.10,因此该判断矩阵A需要进行修改!');
end
elseif ERROR == 1
disp('请检查矩阵A的维数是否不大于1或不是方阵')
elseif ERROR == 2
disp('请检查矩阵A中有元素小于等于0')
elseif ERROR == 3
disp('A的维数n超过了15,请减少准则层的数量')
elseif ERROR == 4
disp('请检查矩阵A中存在i、j不满足A_ij * A_ji = 1')
end
更多数学建模相关内容请关注微信公众号《数学建模学习交流》。同时购买更多优质精选的数学建模资料,在微信公众号后台发送“买”这个字即可进入店铺(我的微店地址:https://weidian.com/?userid=1372657210)进行购买。视频价格不贵,但价值很高。单人购买观看只需要58元,三人购买人均仅需46元,视频本身也是下载到本地观看的,所以请大家不要侵犯知识产权,对视频或者资料进行二次销售。