基于matlab蚁群算法的三维路径规划【含Matlab源码 179期】

一、简介

基于matlab蚁群算法的三维路径规划

二、源代码

%% 该函数用于演示基于蚁群算法的三维路径规划算法

%% 清空环境
clc
clear

%% 数据初始化

%下载数据
load  HeightData HeightData

%网格划分
LevelGrid=10;
PortGrid=21;

%起点终点网格点 
starty=10;starth=4;
endy=8;endh=5;
m=1;
%算法参数
PopNumber=10;         %种群个数
BestFitness=[];    %最佳个体

%初始信息素
pheromone=ones(21,21,21);

%% 初始搜索路径
[path,pheromone]=searchpath(PopNumber,LevelGrid,PortGrid,pheromone, ...
    HeightData,starty,starth,endy,endh); 
fitness=CacuFit(path);                          %适应度计算
[bestfitness,bestindex]=min(fitness);           %最佳适应度
bestpath=path(bestindex,:);                     %最佳路径
BestFitness=[BestFitness;bestfitness];          %适应度值记录
 
%% 信息素更新
rou=0.2;
cfit=100/bestfitness;
for i=2:PortGrid-1
    pheromone(i,bestpath(i*2-1),bestpath(i*2))= ...
        (1-rou)*pheromone(i,bestpath(i*2-1),bestpath(i*2))+rou*cfit;
end
    
%% 循环寻找最优路径
for kk=1:100
     
    %% 路径搜索
    [path,pheromone]=searchpath(PopNumber,LevelGrid,PortGrid,...
        pheromone,HeightData,starty,starth,endy,endh); 
    
    %% 适应度值计算更新
    fitness=CacuFit(path);                               
    [newbestfitness,newbestindex]=min(fitness);     
    if newbestfitness<bestfitness
        bestfitness=newbestfitness;
        bestpath=path(newbestindex,:);
    end 
    BestFitness=[BestFitness;bestfitness];
    
    %% 更新信息素
    cfit=100/bestfitness;
    for i=2:PortGrid-1
        pheromone(i,bestpath(i*2-1),bestpath(i*2))=(1-rou)* ...
            pheromone(i,bestpath(i*2-1),bestpath(i*2))+rou*cfit;
    end
 
end

三、运行结果

基于matlab蚁群算法的三维路径规划【含Matlab源码 179期】_第1张图片

四、备注

完整代码或者代写添加QQ1564658423。
往期回顾>>>>>>
【VRP】基于matlab遗传算法的带时间窗的车辆路径问题【含Matlab源码 002期】
【路径规划】基于matlab A*算法解决三维路径规划问题【含Matlab源码 003期】
【路径规划】基于matlab人工蜂群的路径规划【含Matlab源码 004期】
【路径规划】基于matlab蚁群求解多旅行商MTSP问题【含Matlab源码 005期】
【路径规划】基于matlab蚁群算法的无人机路径规划【含Matlab源码 008期】
【路径规划】基于matlab遗传算法求解多VRP问题【含Matlab源码 010期】
【路径规划】基于matlab遗传算法的多中心VRP求解【含Matlab源码 011期】
【路径规划】基于matlab粒子群的三维无人机路径规划【含Matlab源码 015期】
【路径规划】基于matlab采用遗传算法编制多物流中心的开放式车辆路径问题【含Matlab源码 017期】
【路径规划】基于matlab粒子群之机器人栅格路径规划【含Matlab源码 018期】
【路径规划】基于matlab蚁群算法求解最短路径【含Matlab源码 019期】
【路径规划】基于matlab 免疫算法之物流中心选址问题【含Matlab源码 020期】
【路径规划】基于matlab人工蜂群的无人机三维路径规划【含Matlab源码 021期】
【路径规划】基于matalb栅格地图——遗传算法的机器人最优路径规划【含Matlab源码 022期】
【路径规划】基于matlab栅格地图——遗传算法的机器人最优路径规划【含Matlab源码 027期】
【路径规划】基于matlab蚁群的多无人机攻击调度【含Matlab源码 034期】
【路径规划】基于matlab蚁群的三维路径规划【含matlab源码 043期】
【路径规划】基于matlab粒子群优化蚁群的最短路径求解【含Matlab源码 076期】
【路径规划】基于matlab蚁群算法求解多中心VRP问题【含Matlab源码 111期】
【路径规划】基于matlab蚁群算法求解带时间窗的多中心VRP问题【含Matlab源码 112期】
【路径规划】基于matlab蚁群算法求解带时间窗的多中心VRP问题【含Matlab源码 113期】
【路径规划】基于matalb遗传算法的多中心VRP求解【含Matlab源码 114期】
【路径规划】基于matlab模拟退火求解VRP问题【含Matlab源码 115期】
【路径规划】基于matlab A星的栅格路径规划【含Matlab源码 116期】
【路径规划】基于matlab一种带交叉因子的双向寻优粒子群栅格地图路径规划【含Matlab源码 117期】
【TSP】基于matlab蚁群算法求解旅行商TSP问题含GUI【含Matlab源码 118期】
【路径规划】基于matlab蚁群算法栅格地图路径规划【含Matlab源码 119期】
【TSP问题】基于matlab差分进化求解的TSP问题【含matlab源码 131期】
【路径规划】基于matlab遗传算法的旅行商 TSP 问题【含Matlab源码 135期】
【路径规划】基于matlab模拟退火算法的旅行商 TSP 问题【含Matlab源码 136期】
【路径规划】基于matlab蚁群算法的智能车路径规划【含Matlab源码 137期】
【路径规划】华为杯:无人机在抢险救灾中的优化运用【含Matlab源码 138期】
【路径规划】基于matlab RRT三维路径规划【含Matlab源码 151期】
【路径规划】基于matalb人工势场无人机编队路径规划【 含Matlab 155期】
【VRP问题】基于matlab节约算法求解TWVRP问题【含Matlab源码 156期】
【VRP问题】基于matlab节约算法求解CVRP问题【含Matalb源码 157期】
【VRP问题】基于matlab禁忌搜索算法求解VRP问题【含Matalb源码 158期】
【VRP问题】基于matlab模拟退火求解CVRP问题【含Matlab源码 159期】
【VRP问题】基于matlab人工鱼群求解带时间窗的VRP问题【含Matlab源码 161期】
【VRP问题】基于matlab遗传算法求解带容量的VRP问题【含Matlab源码 162期】
【路径规划】基于matlab狼群算法之三维路径规划【含Matlab源码 167期】
【路径规划】基于matlab人工势场的无人机三维路径规划【含Matlab源码 168期】
【路径规划】基于matlab改进差分之三维多无人机协同航迹规划【含Matlab源码 169期】
【路径规划】基于matlab人工蜂群的多无人机三维路径规划【含Matlab源码 170期】
【路径规划】基于matlab麻雀搜索算法的无人机三维路径规划【含Matlab源码 171期】

你可能感兴趣的:(matlab,路径规划)