最近看java基础的时候,发现一篇非常不错的博客,讲了集合类的一系列知识,顺手整理转载一下,虽然他分析的jdk版本比较老,但是看完之后还是收获挺多的。
转载自:https://www.cnblogs.com/skywang12345/p/3308498.html
Collection是一个接口,是高度抽象出来的集合,它包含了集合的基本操作和属性。
Collection包含了List和Set两大分支:
List是一个有序的队列,每一个元素都有它的索引。第一个元素的索引值是0。
Set是一个不允许有重复元素的集合。
Map是一个映射接口,即key-value键值对。Map中的每一个元素包含“一个key”和“key对应的value”
Iterator是遍历集合的工具,即我们通常通过Iterator迭代器来遍历集合。我们说Collection依赖于Iterator,是因为Collection的实现类都要实现iterator()函数,返回一个Iterator对象。
ListIterator是专门为遍历List而存在的。
Enumeration是JDK 1.0引入的抽象类。作用和Iterator一样,也是遍历集合;但是Enumeration的功能要比Iterator少。在上面的框图中,Enumeration只能在Hashtable, Vector, Stack中使用。
Arrays和Collections,它们是操作数组、集合的两个工具类。
Collection是一个接口,它主要的两个分支是:List 和 Set。
List和Set都是接口,它们继承于Collection。List是有序的队列,List中可以有重复的元素;而Set是数学概念中的集合,Set中没有重复元素!
为了方便,我们抽象出了AbstractCollection抽象类,它实现了Collection中的绝大部分函数;这样,在Collection的实现类中,我们就可以通过继承AbstractCollection省去重复编码。AbstractList和AbstractSet都继承AbstractCollection,具体的List实现类继承于AbstractList,而Set的实现类则继承于AbstractSet。
另外,Collection中有一个iterator()函数,它的作用是返回一个Iterator接口。通常,我们通过Iterator迭代器来遍历集合。ListIterator是List接口所特有的,在List接口中,通过ListIterator()返回一个ListIterator对象
Collection的定义如下:
public interface Collection<E> extends Iterable<E> {
}
它是一个接口,是高度抽象出来的集合,它包含了集合的基本操作:添加、删除、清空、遍历(读取)、是否为空、获取大小、是否保护某元素等等。
Collection接口的所有子类(直接子类和间接子类)都必须实现2种构造函数:不带参数的构造函数 和 参数为Collection的构造函数。带参数的构造函数,可以用来转换Collection的类型。
// Collection的API
abstract boolean add(E object)
abstract boolean addAll(Collection<? extends E> collection)
abstract void clear()
abstract boolean contains(Object object)
abstract boolean containsAll(Collection<?> collection)
abstract boolean equals(Object object)
abstract int hashCode()
abstract boolean isEmpty()
abstract Iterator<E> iterator()
abstract boolean remove(Object object)
abstract boolean removeAll(Collection<?> collection)
abstract boolean retainAll(Collection<?> collection)
abstract int size()
abstract <T> T[] toArray(T[] array)
abstract Object[] toArray()
List的定义如下:
public interface List<E> extends Collection<E> {
}
List是一个继承于Collection的接口,即List是集合中的一种。List是有序的队列,List中的每一个元素都有一个索引;第一个元素的索引值是0,往后的元素的索引值依次+1。和Set不同,List中允许有重复的元素。
关于API方面,既然List是继承于Collection接口,它自然就包含了Collection中的全部函数接口;由于List是有序队列,它也额外的有自己的API接口。主要有“添加、删除、获取、修改指定位置的元素”、“获取List中的子队列”等。
// 相比与Collection,List新增的API:
abstract void add(int location, E object)
abstract boolean addAll(int location, Collection<? extends E> collection)
abstract E get(int location)
abstract int indexOf(Object object)
abstract int lastIndexOf(Object object)
abstract ListIterator<E> listIterator(int location)
abstract ListIterator<E> listIterator()
abstract E remove(int location)
abstract E set(int location, E object)
abstract List<E> subList(int start, int end)
Set的定义如下:
public interface Set<E> extends Collection<E> {
}
Set是一个继承于Collection的接口,即Set也是集合中的一种。Set是没有重复元素的集合。
关于API方面,Set的API和Collection完全一样。
// Set的API
abstract boolean add(E object)
abstract boolean addAll(Collection<? extends E> collection)
abstract void clear()
abstract boolean contains(Object object)
abstract boolean containsAll(Collection<?> collection)
abstract boolean equals(Object object)
abstract int hashCode()
abstract boolean isEmpty()
abstract Iterator<E> iterator()
abstract boolean remove(Object object)
abstract boolean removeAll(Collection<?> collection)
abstract boolean retainAll(Collection<?> collection)
abstract int size()
abstract <T> T[] toArray(T[] array)
abstract Object[] toArray()
AbstractCollection的定义如下:
public abstract class AbstractCollection<E> implements Collection<E> {
}
AbstractCollection是一个抽象类,它实现了Collection中除iterator()和size()之外的函数。
AbstractCollection的主要作用:它实现了Collection接口中的大部分函数。从而方便其它类实现Collection,比如ArrayList、LinkedList等,它们这些类想要实现Collection接口,通过继承AbstractCollection就已经实现了大部分的接口了。
AbstractList的定义如下:
public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> {
}
AbstractList是一个继承于AbstractCollection,并且实现List接口的抽象类。它实现了List中除size()、get(int location)之外的函数。
AbstractList的主要作用:它实现了List接口中的大部分函数。从而方便其它类继承List。
另外,和AbstractCollection相比,AbstractList抽象类中,实现了iterator()接口。
AbstractSet的定义如下:
public abstract class AbstractSet<E> extends AbstractCollection<E> implements Set<E> {
}
AbstractSet是一个继承于AbstractCollection,并且实现Set接口的抽象类。由于Set接口和Collection接口中的API完全一样,Set也就没有自己单独的API。和AbstractCollection一样,它实现了Set中除iterator()和size()之外的函数。
AbstractSet的主要作用:它实现了Set接口中的大部分函数。从而方便其它类实现Set接口。
Iterator的定义如下:
public interface Iterator<E> {
}
Iterator是一个接口,它是集合的迭代器。集合可以通过Iterator去遍历集合中的元素。Iterator提供的API接口,包括:是否存在下一个元素、获取下一个元素、删除当前元素。
注意:Iterator遍历Collection时,是fail-fast机制的。即,当某一个线程A通过iterator去遍历某集合的过程中,若该集合的内容被其他线程所改变了,那么线程A访问集合时,就会抛出ConcurrentModificationException异常,产生fail-fast事件。
// Iterator的API
abstract boolean hasNext()
abstract E next()
abstract void remove()
ListIterator的定义如下:
public interface ListIterator<E> extends Iterator<E> {
}
ListIterator是一个继承于Iterator的接口,它是队列迭代器。专门用于便利List,能提供向前/向后遍历。相比于Iterator,它新增了添加、是否存在上一个元素、获取上一个元素等等API接口。
// ListIterator的API
// 继承于Iterator的接口
abstract boolean hasNext()
abstract E next()
abstract void remove()
// 新增API接口
abstract void add(E object)
abstract boolean hasPrevious()
abstract int nextIndex()
abstract E previous()
abstract int previousIndex()
abstract void set(E object)
ArrayList 是一个数组队列,相当于 动态数组。与Java中的数组相比,它的容量能动态增长。它继承于AbstractList,实现了List, RandomAccess, Cloneable, java.io.Serializable这些接口。
ArrayList继承了AbstractList,实现了List。它是一个数组队列,提供了相关的添加、删除、修改、遍历等功能。
ArrayList实现了RandmoAccess接口,即提供了随机访问功能。
ArrayList 实现了Cloneable接口,即覆盖了函数clone(),能被克隆。
ArrayList 实现java.io.Serializable接口,这意味着ArrayList支持序列化,能通过序列化去传输。
和Vector不同,ArrayList中的操作不是线程安全的!所以,建议在单线程中才使用ArrayList,而在多线程中可以选择Vector或者CopyOnWriteArrayList。
// 默认构造函数
ArrayList()
// capacity是ArrayList的默认容量大小。当由于增加数据导致容量不足时,容量会添加上一次容量大小的一半。
ArrayList(int capacity)
// 创建一个包含collection的ArrayList
ArrayList(Collection<? extends E> collection)
// Collection中定义的API
boolean add(E object)
boolean addAll(Collection<? extends E> collection)
void clear()
boolean contains(Object object)
boolean containsAll(Collection<?> collection)
boolean equals(Object object)
int hashCode()
boolean isEmpty()
Iterator<E> iterator()
boolean remove(Object object)
boolean removeAll(Collection<?> collection)
boolean retainAll(Collection<?> collection)
int size()
<T> T[] toArray(T[] array)
Object[] toArray()
// AbstractCollection中定义的API
void add(int location, E object)
boolean addAll(int location, Collection<? extends E> collection)
E get(int location)
int indexOf(Object object)
int lastIndexOf(Object object)
ListIterator<E> listIterator(int location)
ListIterator<E> listIterator()
E remove(int location)
E set(int location, E object)
List<E> subList(int start, int end)
// ArrayList新增的API
Object clone()
void ensureCapacity(int minimumCapacity)
void trimToSize()
void removeRange(int fromIndex, int toIndex)
java.lang.Object
↳ java.util.AbstractCollection<E>
↳ java.util.AbstractList<E>
↳ java.util.ArrayList<E>
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
}
ArrayList与Collection关系如下图:
ArrayList包含了两个重要的对象:elementData 和 size。
package java.util;
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
// 序列版本号
private static final long serialVersionUID = 8683452581122892189L;
// 保存ArrayList中数据的数组
private transient Object[] elementData;
// ArrayList中实际数据的数量
private int size;
// ArrayList带容量大小的构造函数。
public ArrayList(int initialCapacity) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
// 新建一个数组
this.elementData = new Object[initialCapacity];
}
// ArrayList构造函数。默认容量是10。
public ArrayList() {
this(10);
}
// 创建一个包含collection的ArrayList
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
size = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
}
// 将当前容量值设为 =实际元素个数
public void trimToSize() {
modCount++;
int oldCapacity = elementData.length;
if (size < oldCapacity) {
elementData = Arrays.copyOf(elementData, size);
}
}
// 确定ArrarList的容量。
// 若ArrayList的容量不足以容纳当前的全部元素,设置 新的容量=“(原始容量x3)/2 + 1”
public void ensureCapacity(int minCapacity) {
// 将“修改统计数”+1
modCount++;
int oldCapacity = elementData.length;
// 若当前容量不足以容纳当前的元素个数,设置 新的容量=“(原始容量x3)/2 + 1”
if (minCapacity > oldCapacity) {
Object oldData[] = elementData;
int newCapacity = (oldCapacity * 3)/2 + 1;
if (newCapacity < minCapacity)
newCapacity = minCapacity;
elementData = Arrays.copyOf(elementData, newCapacity);
}
}
// 添加元素e
public boolean add(E e) {
// 确定ArrayList的容量大小
ensureCapacity(size + 1); // Increments modCount!!
// 添加e到ArrayList中
elementData[size++] = e;
return true;
}
// 返回ArrayList的实际大小
public int size() {
return size;
}
// 返回ArrayList是否包含Object(o)
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
// 返回ArrayList是否为空
public boolean isEmpty() {
return size == 0;
}
// 正向查找,返回元素的索引值
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
// 反向查找,返回元素的索引值
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
// 反向查找(从数组末尾向开始查找),返回元素(o)的索引值
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
// 返回ArrayList的Object数组
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
}
// 返回ArrayList的模板数组。所谓模板数组,即可以将T设为任意的数据类型
public <T> T[] toArray(T[] a) {
// 若数组a的大小 < ArrayList的元素个数;
// 则新建一个T[]数组,数组大小是“ArrayList的元素个数”,并将“ArrayList”全部拷贝到新数组中
if (a.length < size)
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
// 若数组a的大小 >= ArrayList的元素个数;
// 则将ArrayList的全部元素都拷贝到数组a中。
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
// 获取index位置的元素值
public E get(int index) {
RangeCheck(index);
return (E) elementData[index];
}
// 设置index位置的值为element
public E set(int index, E element) {
RangeCheck(index);
E oldValue = (E) elementData[index];
elementData[index] = element;
return oldValue;
}
// 将e添加到ArrayList中
public boolean add(E e) {
ensureCapacity(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
// 将e添加到ArrayList的指定位置
public void add(int index, E element) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(
"Index: "+index+", Size: "+size);
ensureCapacity(size+1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}
// 删除ArrayList指定位置的元素
public E remove(int index) {
RangeCheck(index);
modCount++;
E oldValue = (E) elementData[index];
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // Let gc do its work
return oldValue;
}
// 删除ArrayList的指定元素
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
// 快速删除第index个元素
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
// 从"index+1"开始,用后面的元素替换前面的元素。
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
// 将最后一个元素设为null
elementData[--size] = null; // Let gc do its work
}
// 删除元素
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
// 便利ArrayList,找到“元素o”,则删除,并返回true。
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
// 清空ArrayList,将全部的元素设为null
public void clear() {
modCount++;
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
// 将集合c追加到ArrayList中
public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacity(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
// 从index位置开始,将集合c添加到ArrayList
public boolean addAll(int index, Collection<? extends E> c) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(
"Index: " + index + ", Size: " + size);
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacity(size + numNew); // Increments modCount
int numMoved = size - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
}
// 删除fromIndex到toIndex之间的全部元素。
protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// Let gc do its work
int newSize = size - (toIndex-fromIndex);
while (size != newSize)
elementData[--size] = null;
}
private void RangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(
"Index: "+index+", Size: "+size);
}
// 克隆函数
public Object clone() {
try {
ArrayList<E> v = (ArrayList<E>) super.clone();
// 将当前ArrayList的全部元素拷贝到v中
v.elementData = Arrays.copyOf(elementData, size);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
}
// java.io.Serializable的写入函数
// 将ArrayList的“容量,所有的元素值”都写入到输出流中
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject();
// 写入“数组的容量”
s.writeInt(elementData.length);
// 写入“数组的每一个元素”
for (int i=0; i<size; i++)
s.writeObject(elementData[i]);
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
// java.io.Serializable的读取函数:根据写入方式读出
// 先将ArrayList的“容量”读出,然后将“所有的元素值”读出
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in size, and any hidden stuff
s.defaultReadObject();
// 从输入流中读取ArrayList的“容量”
int arrayLength = s.readInt();
Object[] a = elementData = new Object[arrayLength];
// 从输入流中将“所有的元素值”读出
for (int i=0; i<size; i++)
a[i] = s.readObject();
}
}
总结:
ArrayList支持3种遍历方式
Integer value = null;
Iterator iter = list.iterator();
while (iter.hasNext()) {
value = (Integer)iter.next();
}
Integer value = null;
int size = list.size();
for (int i=0; i<size; i++) {
value = (Integer)list.get(i);
}
Integer value = null;
for (Integer integ:list) {
value = integ;
}
比较这3种方式的效率:遍历ArrayList时,使用随机访问(即,通过索引序号访问)效率最高,而使用迭代器的效率最低!
当我们调用ArrayList中的 toArray(),可能遇到过抛出“java.lang.ClassCastException”异常的情况。
ArrayList提供了2个toArray()函数:
Object[] toArray()
<T> T[] toArray(T[] contents)
调用 toArray() 函数会抛出“java.lang.ClassCastException”异常,但是调用 toArray(T[] contents) 能正常返回 T[]。
toArray() 会抛出异常是因为toArray() 返回的是 Object[] 数组,将 Object[] 转换为其它类型(如如,将Object[]转换为的Integer[])则会抛出“java.lang.ClassCastException”异常,因为Java不支持向下转型。
解决该问题的办法是调用 T[] toArray(T[] contents) , 而不是 Object[] toArray()。
调用 toArray(T[] contents) 返回T[]的可以通过以下几种方式实现。
// toArray(T[] contents)调用方式一
public static Integer[] vectorToArray1(ArrayList<Integer> v) {
Integer[] newText = new Integer[v.size()];
v.toArray(newText);
return newText;
}
// toArray(T[] contents)调用方式二,最常用!
public static Integer[] vectorToArray2(ArrayList<Integer> v) {
Integer[] newText = (Integer[])v.toArray(new Integer[0]);
return newText;
}
// toArray(T[] contents)调用方式三
public static Integer[] vectorToArray3(ArrayList<Integer> v) {
Integer[] newText = new Integer[v.size()];
Integer[] newStrings = (Integer[])v.toArray(newText);
return newStrings;
}
**fail-fast 机制是java集合(Collection)中的一种错误机制。**当多个线程对同一个集合的内容进行操作时,就可能会产生fail-fast事件。
例如:当某一个线程A通过iterator去遍历某集合的过程中,若该集合的内容被其他线程所改变了;那么线程A访问集合时,就会抛出ConcurrentModificationException异常,产生fail-fast事件。
fail-fast机制,是一种错误检测机制。**它只能被用来检测错误,因为JDK并不保证fail-fast机制一定会发生。**若在多线程环境下使用fail-fast机制的集合,建议使用“java.util.concurrent包下的类”去取代“java.util包下的类”。
产生fail-fast事件,是通过抛出ConcurrentModificationException异常来触发的。
那么,ArrayList是如何抛出ConcurrentModificationException异常的呢?
我们知道,ConcurrentModificationException是在操作Iterator时抛出的异常。我们先看看Iterator的源码。ArrayList的Iterator是在父类AbstractList.java中实现的。代码如下:
package java.util;
public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> {
...
// AbstractList中唯一的属性
// 用来记录List修改的次数:每修改一次(添加/删除等操作),将modCount+1
protected transient int modCount = 0;
// 返回List对应迭代器。实际上,是返回Itr对象。
public Iterator<E> iterator() {
return new Itr();
}
// Itr是Iterator(迭代器)的实现类
private class Itr implements Iterator<E> {
int cursor = 0;
int lastRet = -1;
// 修改数的记录值。
// 每次新建Itr()对象时,都会保存新建该对象时对应的modCount;
// 以后每次遍历List中的元素的时候,都会比较expectedModCount和modCount是否相等;
// 若不相等,则抛出ConcurrentModificationException异常,产生fail-fast事件。
int expectedModCount = modCount;
public boolean hasNext() {
return cursor != size();
}
public E next() {
// 获取下一个元素之前,都会判断“新建Itr对象时保存的modCount”和“当前的modCount”是否相等;
// 若不相等,则抛出ConcurrentModificationException异常,产生fail-fast事件。
checkForComodification();
try {
E next = get(cursor);
lastRet = cursor++;
return next;
} catch (IndexOutOfBoundsException e) {
checkForComodification();
throw new NoSuchElementException();
}
}
public void remove() {
if (lastRet == -1)
throw new IllegalStateException();
checkForComodification();
try {
AbstractList.this.remove(lastRet);
if (lastRet < cursor)
cursor--;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException e) {
throw new ConcurrentModificationException();
}
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
...
}
从中,我们可以发现在调用 next() 和 remove()时,都会执行 checkForComodification()。若 “modCount 不等于 expectedModCount”,则抛出ConcurrentModificationException异常,产生fail-fast事件。
要搞明白 fail-fast机制,我们就要需要理解什么时候“modCount 不等于 expectedModCount”!
从Itr类中,我们知道 expectedModCount 在创建Itr对象时,被赋值为 modCount。通过Itr,我们知道:expectedModCount不可能被修改为不等于 modCount。所以,需要考证的就是modCount何时会被修改。
从ArrayList的源码中,我们发现:无论是add()、remove(),还是clear(),只要涉及到修改集合中的元素个数时,都会改变modCount的值。
接下来,我们再系统的梳理一下fail-fast是怎么产生的。步骤如下:
至此,我们就完全了解了fail-fast是如何产生的!
即,当多个线程对同一个集合进行操作的时候,某线程访问集合的过程中,该集合的内容被其他线程所改变(即其它线程通过add、remove、clear等方法,改变了modCount的值);这时,就会抛出ConcurrentModificationException异常,产生fail-fast事件。
我们再进一步谈谈java.util.concurrent包中是如何解决fail-fast事件的。
我们先看看CopyOnWriteArrayList的源码:
package java.util.concurrent;
import java.util.*;
import java.util.concurrent.locks.*;
import sun.misc.Unsafe;
public class CopyOnWriteArrayList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
...
// 返回集合对应的迭代器
public Iterator<E> iterator() {
return new COWIterator<E>(getArray(), 0);
}
...
private static class COWIterator<E> implements ListIterator<E> {
private final Object[] snapshot;
private int cursor;
private COWIterator(Object[] elements, int initialCursor) {
cursor = initialCursor;
// 新建COWIterator时,将集合中的元素保存到一个新的拷贝数组中。
// 这样,当原始集合的数据改变,拷贝数据中的值也不会变化。
snapshot = elements;
}
public boolean hasNext() {
return cursor < snapshot.length;
}
public boolean hasPrevious() {
return cursor > 0;
}
public E next() {
if (! hasNext())
throw new NoSuchElementException();
return (E) snapshot[cursor++];
}
public E previous() {
if (! hasPrevious())
throw new NoSuchElementException();
return (E) snapshot[--cursor];
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor-1;
}
public void remove() {
throw new UnsupportedOperationException();
}
public void set(E e) {
throw new UnsupportedOperationException();
}
public void add(E e) {
throw new UnsupportedOperationException();
}
}
...
}
从中,我们可以看出:
LinkedList 是一个继承于AbstractSequentialList的双向链表。它也可以被当作堆栈、队列或双端队列进行操作。
LinkedList 实现 List 接口,能对它进行队列操作。
LinkedList 实现 Deque 接口,即能将LinkedList当作双端队列使用。
LinkedList 实现了Cloneable接口,即覆盖了函数clone(),能克隆。
LinkedList 实现java.io.Serializable接口,这意味着LinkedList支持序列化,能通过序列化去传输。
LinkedList 是非同步的。
LinkedList构造函数
// 默认构造函数
LinkedList()
// 创建一个LinkedList,保护Collection中的全部元素。
LinkedList(Collection<? extends E> collection)
LinkedList的API
LinkedList的API
boolean add(E object)
void add(int location, E object)
boolean addAll(Collection<? extends E> collection)
boolean addAll(int location, Collection<? extends E> collection)
void addFirst(E object)
void addLast(E object)
void clear()
Object clone()
boolean contains(Object object)
Iterator<E> descendingIterator()
E element()
E get(int location)
E getFirst()
E getLast()
int indexOf(Object object)
int lastIndexOf(Object object)
ListIterator<E> listIterator(int location)
boolean offer(E o)
boolean offerFirst(E e)
boolean offerLast(E e)
E peek()
E peekFirst()
E peekLast()
E poll()
E pollFirst()
E pollLast()
E pop()
void push(E e)
E remove()
E remove(int location)
boolean remove(Object object)
E removeFirst()
boolean removeFirstOccurrence(Object o)
E removeLast()
boolean removeLastOccurrence(Object o)
E set(int location, E object)
int size()
<T> T[] toArray(T[] contents)
Object[] toArray()
AbstractSequentialList 实现了get(int index)、set(int index, E element)、add(int index, E element) 和 remove(int index)这些函数。这些接口都是随机访问List的,LinkedList是双向链表;既然它继承于AbstractSequentialList,就相当于已经实现了“get(int index)这些接口”。
此外,我们若需要通过AbstractSequentialList自己实现一个列表,只需要扩展此类,并提供 listIterator() 和 size() 方法的实现即可。若要实现不可修改的列表,则需要实现列表迭代器的 hasNext、next、hasPrevious、previous 和 index 方法即可。
java.lang.Object
↳ java.util.AbstractCollection<E>
↳ java.util.AbstractList<E>
↳ java.util.AbstractSequentialList<E>
↳ java.util.LinkedList<E>
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable {
}
LinkedList与Collection关系如下图:
LinkedList的本质是双向链表。
LinkedList继承于AbstractSequentialList,并且实现了Dequeue接口。
LinkedList包含两个重要的成员:header 和 size。
在阅读源码之前,我们先对LinkedList的整体实现进行大致说明:
LinkedList实际上是通过双向链表去实现的。既然是双向链表,那么它的顺序访问会非常高效,而随机访问效率比较低。
既然LinkedList是通过双向链表的,但是它也实现了List接口(也就是说,它实现了get(int location)、remove(int location)等“根据索引值来获取、删除节点的函数”)。LinkedList是如何实现List的这些接口的,如何将“双向链表和索引值联系起来的”?
这就是“双向链表和索引值联系起来”的方法。
package java.util;
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
// 链表的表头,表头不包含任何数据。Entry是个链表类数据结构。
private transient Entry<E> header = new Entry<E>(null, null, null);
// LinkedList中元素个数
private transient int size = 0;
// 默认构造函数:创建一个空的链表
public LinkedList() {
header.next = header.previous = header;
}
// 包含“集合”的构造函数:创建一个包含“集合”的LinkedList
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
// 获取LinkedList的第一个元素
public E getFirst() {
if (size==0)
throw new NoSuchElementException();
// 链表的表头header中不包含数据。
// 这里返回header所指下一个节点所包含的数据。
return header.next.element;
}
// 获取LinkedList的最后一个元素
public E getLast() {
if (size==0)
throw new NoSuchElementException();
// 由于LinkedList是双向链表;而表头header不包含数据。
// 因而,这里返回表头header的前一个节点所包含的数据。
return header.previous.element;
}
// 删除LinkedList的第一个元素
public E removeFirst() {
return remove(header.next);
}
// 删除LinkedList的最后一个元素
public E removeLast() {
return remove(header.previous);
}
// 将元素添加到LinkedList的起始位置
public void addFirst(E e) {
addBefore(e, header.next);
}
// 将元素添加到LinkedList的结束位置
public void addLast(E e) {
addBefore(e, header);
}
// 判断LinkedList是否包含元素(o)
public boolean contains(Object o) {
return indexOf(o) != -1;
}
// 返回LinkedList的大小
public int size() {
return size;
}
// 将元素(E)添加到LinkedList中
public boolean add(E e) {
// 将节点(节点数据是e)添加到表头(header)之前。
// 即,将节点添加到双向链表的末端。
addBefore(e, header);
return true;
}
// 从LinkedList中删除元素(o)
// 从链表开始查找,如存在元素(o)则删除该元素并返回true;
// 否则,返回false。
public boolean remove(Object o) {
if (o==null) {
// 若o为null的删除情况
for (Entry<E> e = header.next; e != header; e = e.next) {
if (e.element==null) {
remove(e);
return true;
}
}
} else {
// 若o不为null的删除情况
for (Entry<E> e = header.next; e != header; e = e.next) {
if (o.equals(e.element)) {
remove(e);
return true;
}
}
}
return false;
}
// 将“集合(c)”添加到LinkedList中。
// 实际上,是从双向链表的末尾开始,将“集合(c)”添加到双向链表中。
public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
}
// 从双向链表的index开始,将“集合(c)”添加到双向链表中。
public boolean addAll(int index, Collection<? extends E> c) {
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index+
", Size: "+size);
Object[] a = c.toArray();
// 获取集合的长度
int numNew = a.length;
if (numNew==0)
return false;
modCount++;
// 设置“当前要插入节点的后一个节点”
Entry<E> successor = (index==size ? header : entry(index));
// 设置“当前要插入节点的前一个节点”
Entry<E> predecessor = successor.previous;
// 将集合(c)全部插入双向链表中
for (int i=0; i<numNew; i++) {
Entry<E> e = new Entry<E>((E)a[i], successor, predecessor);
predecessor.next = e;
predecessor = e;
}
successor.previous = predecessor;
// 调整LinkedList的实际大小
size += numNew;
return true;
}
// 清空双向链表
public void clear() {
Entry<E> e = header.next;
// 从表头开始,逐个向后遍历;对遍历到的节点执行一下操作:
// (01) 设置前一个节点为null
// (02) 设置当前节点的内容为null
// (03) 设置后一个节点为“新的当前节点”
while (e != header) {
Entry<E> next = e.next;
e.next = e.previous = null;
e.element = null;
e = next;
}
header.next = header.previous = header;
// 设置大小为0
size = 0;
modCount++;
}
// 返回LinkedList指定位置的元素
public E get(int index) {
return entry(index).element;
}
// 设置index位置对应的节点的值为element
public E set(int index, E element) {
Entry<E> e = entry(index);
E oldVal = e.element;
e.element = element;
return oldVal;
}
// 在index前添加节点,且节点的值为element
public void add(int index, E element) {
addBefore(element, (index==size ? header : entry(index)));
}
// 删除index位置的节点
public E remove(int index) {
return remove(entry(index));
}
// 获取双向链表中指定位置的节点
private Entry<E> entry(int index) {
if (index < 0 || index >= size)
throw new IndexOutOfBoundsException("Index: "+index+
", Size: "+size);
Entry<E> e = header;
// 获取index处的节点。
// 若index < 双向链表长度的1/2,则从前先后查找;
// 否则,从后向前查找。
if (index < (size >> 1)) {
for (int i = 0; i <= index; i++)
e = e.next;
} else {
for (int i = size; i > index; i--)
e = e.previous;
}
return e;
}
// 从前向后查找,返回“值为对象(o)的节点对应的索引”
// 不存在就返回-1
public int indexOf(Object o) {
int index = 0;
if (o==null) {
for (Entry e = header.next; e != header; e = e.next) {
if (e.element==null)
return index;
index++;
}
} else {
for (Entry e = header.next; e != header; e = e.next) {
if (o.equals(e.element))
return index;
index++;
}
}
return -1;
}
// 从后向前查找,返回“值为对象(o)的节点对应的索引”
// 不存在就返回-1
public int lastIndexOf(Object o) {
int index = size;
if (o==null) {
for (Entry e = header.previous; e != header; e = e.previous) {
index--;
if (e.element==null)
return index;
}
} else {
for (Entry e = header.previous; e != header; e = e.previous) {
index--;
if (o.equals(e.element))
return index;
}
}
return -1;
}
// 返回第一个节点
// 若LinkedList的大小为0,则返回null
public E peek() {
if (size==0)
return null;
return getFirst();
}
// 返回第一个节点
// 若LinkedList的大小为0,则抛出异常
public E element() {
return getFirst();
}
// 删除并返回第一个节点
// 若LinkedList的大小为0,则返回null
public E poll() {
if (size==0)
return null;
return removeFirst();
}
// 将e添加双向链表末尾
public boolean offer(E e) {
return add(e);
}
// 将e添加双向链表开头
public boolean offerFirst(E e) {
addFirst(e);
return true;
}
// 将e添加双向链表末尾
public boolean offerLast(E e) {
addLast(e);
return true;
}
// 返回第一个节点
// 若LinkedList的大小为0,则返回null
public E peekFirst() {
if (size==0)
return null;
return getFirst();
}
// 返回最后一个节点
// 若LinkedList的大小为0,则返回null
public E peekLast() {
if (size==0)
return null;
return getLast();
}
// 删除并返回第一个节点
// 若LinkedList的大小为0,则返回null
public E pollFirst() {
if (size==0)
return null;
return removeFirst();
}
// 删除并返回最后一个节点
// 若LinkedList的大小为0,则返回null
public E pollLast() {
if (size==0)
return null;
return removeLast();
}
// 将e插入到双向链表开头
public void push(E e) {
addFirst(e);
}
// 删除并返回第一个节点
public E pop() {
return removeFirst();
}
// 从LinkedList开始向后查找,删除第一个值为元素(o)的节点
// 从链表开始查找,如存在节点的值为元素(o)的节点,则删除该节点
public boolean removeFirstOccurrence(Object o) {
return remove(o);
}
// 从LinkedList末尾向前查找,删除第一个值为元素(o)的节点
// 从链表开始查找,如存在节点的值为元素(o)的节点,则删除该节点
public boolean removeLastOccurrence(Object o) {
if (o==null) {
for (Entry<E> e = header.previous; e != header; e = e.previous) {
if (e.element==null) {
remove(e);
return true;
}
}
} else {
for (Entry<E> e = header.previous; e != header; e = e.previous) {
if (o.equals(e.element)) {
remove(e);
return true;
}
}
}
return false;
}
// 返回“index到末尾的全部节点”对应的ListIterator对象(List迭代器)
public ListIterator<E> listIterator(int index) {
return new ListItr(index);
}
// List迭代器
private class ListItr implements ListIterator<E> {
// 上一次返回的节点
private Entry<E> lastReturned = header;
// 下一个节点
private Entry<E> next;
// 下一个节点对应的索引值
private int nextIndex;
// 期望的改变计数。用来实现fail-fast机制。
private int expectedModCount = modCount;
// 构造函数。
// 从index位置开始进行迭代
ListItr(int index) {
// index的有效性处理
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index+ ", Size: "+size);
// 若 “index 小于 ‘双向链表长度的一半’”,则从第一个元素开始往后查找;
// 否则,从最后一个元素往前查找。
if (index < (size >> 1)) {
next = header.next;
for (nextIndex=0; nextIndex<index; nextIndex++)
next = next.next;
} else {
next = header;
for (nextIndex=size; nextIndex>index; nextIndex--)
next = next.previous;
}
}
// 是否存在下一个元素
public boolean hasNext() {
// 通过元素索引是否等于“双向链表大小”来判断是否达到最后。
return nextIndex != size;
}
// 获取下一个元素
public E next() {
checkForComodification();
if (nextIndex == size)
throw new NoSuchElementException();
lastReturned = next;
// next指向链表的下一个元素
next = next.next;
nextIndex++;
return lastReturned.element;
}
// 是否存在上一个元素
public boolean hasPrevious() {
// 通过元素索引是否等于0,来判断是否达到开头。
return nextIndex != 0;
}
// 获取上一个元素
public E previous() {
if (nextIndex == 0)
throw new NoSuchElementException();
// next指向链表的上一个元素
lastReturned = next = next.previous;
nextIndex--;
checkForComodification();
return lastReturned.element;
}
// 获取下一个元素的索引
public int nextIndex() {
return nextIndex;
}
// 获取上一个元素的索引
public int previousIndex() {
return nextIndex-1;
}
// 删除当前元素。
// 删除双向链表中的当前节点
public void remove() {
checkForComodification();
Entry<E> lastNext = lastReturned.next;
try {
LinkedList.this.remove(lastReturned);
} catch (NoSuchElementException e) {
throw new IllegalStateException();
}
if (next==lastReturned)
next = lastNext;
else
nextIndex--;
lastReturned = header;
expectedModCount++;
}
// 设置当前节点为e
public void set(E e) {
if (lastReturned == header)
throw new IllegalStateException();
checkForComodification();
lastReturned.element = e;
}
// 将e添加到当前节点的前面
public void add(E e) {
checkForComodification();
lastReturned = header;
addBefore(e, next);
nextIndex++;
expectedModCount++;
}
// 判断 “modCount和expectedModCount是否相等”,依次来实现fail-fast机制。
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
// 双向链表的节点所对应的数据结构。
// 包含3部分:上一节点,下一节点,当前节点值。
private static class Entry<E> {
// 当前节点所包含的值
E element;
// 下一个节点
Entry<E> next;
// 上一个节点
Entry<E> previous;
/**
* 链表节点的构造函数。
* 参数说明:
* element —— 节点所包含的数据
* next —— 下一个节点
* previous —— 上一个节点
*/
Entry(E element, Entry<E> next, Entry<E> previous) {
this.element = element;
this.next = next;
this.previous = previous;
}
}
// 将节点(节点数据是e)添加到entry节点之前。
private Entry<E> addBefore(E e, Entry<E> entry) {
// 新建节点newEntry,将newEntry插入到节点e之前;并且设置newEntry的数据是e
Entry<E> newEntry = new Entry<E>(e, entry, entry.previous);
newEntry.previous.next = newEntry;
newEntry.next.previous = newEntry;
// 修改LinkedList大小
size++;
// 修改LinkedList的修改统计数:用来实现fail-fast机制。
modCount++;
return newEntry;
}
// 将节点从链表中删除
private E remove(Entry<E> e) {
if (e == header)
throw new NoSuchElementException();
E result = e.element;
e.previous.next = e.next;
e.next.previous = e.previous;
e.next = e.previous = null;
e.element = null;
size--;
modCount++;
return result;
}
// 反向迭代器
public Iterator<E> descendingIterator() {
return new DescendingIterator();
}
// 反向迭代器实现类。
private class DescendingIterator implements Iterator {
final ListItr itr = new ListItr(size());
// 反向迭代器是否下一个元素。
// 实际上是判断双向链表的当前节点是否达到开头
public boolean hasNext() {
return itr.hasPrevious();
}
// 反向迭代器获取下一个元素。
// 实际上是获取双向链表的前一个节点
public E next() {
return itr.previous();
}
// 删除当前节点
public void remove() {
itr.remove();
}
}
// 返回LinkedList的Object[]数组
public Object[] toArray() {
// 新建Object[]数组
Object[] result = new Object[size];
int i = 0;
// 将链表中所有节点的数据都添加到Object[]数组中
for (Entry<E> e = header.next; e != header; e = e.next)
result[i++] = e.element;
return result;
}
// 返回LinkedList的模板数组。所谓模板数组,即可以将T设为任意的数据类型
public <T> T[] toArray(T[] a) {
// 若数组a的大小 < LinkedList的元素个数(意味着数组a不能容纳LinkedList中全部元素)
// 则新建一个T[]数组,T[]的大小为LinkedList大小,并将该T[]赋值给a。
if (a.length < size)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(), size);
// 将链表中所有节点的数据都添加到数组a中
int i = 0;
Object[] result = a;
for (Entry<E> e = header.next; e != header; e = e.next)
result[i++] = e.element;
if (a.length > size)
a[size] = null;
return a;
}
// 克隆函数。返回LinkedList的克隆对象。
public Object clone() {
LinkedList<E> clone = null;
// 克隆一个LinkedList克隆对象
try {
clone = (LinkedList<E>) super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
// 新建LinkedList表头节点
clone.header = new Entry<E>(null, null, null);
clone.header.next = clone.header.previous = clone.header;
clone.size = 0;
clone.modCount = 0;
// 将链表中所有节点的数据都添加到克隆对象中
for (Entry<E> e = header.next; e != header; e = e.next)
clone.add(e.element);
return clone;
}
// java.io.Serializable的写入函数
// 将LinkedList的“容量,所有的元素值”都写入到输出流中
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out any hidden serialization magic
s.defaultWriteObject();
// 写入“容量”
s.writeInt(size);
// 将链表中所有节点的数据都写入到输出流中
for (Entry e = header.next; e != header; e = e.next)
s.writeObject(e.element);
}
// java.io.Serializable的读取函数:根据写入方式反向读出
// 先将LinkedList的“容量”读出,然后将“所有的元素值”读出
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in any hidden serialization magic
s.defaultReadObject();
// 从输入流中读取“容量”
int size = s.readInt();
// 新建链表表头节点
header = new Entry<E>(null, null, null);
header.next = header.previous = header;
// 从输入流中将“所有的元素值”并逐个添加到链表中
for (int i=0; i<size; i++)
addBefore((E)s.readObject(), header);
}
}
总结:
LinkedList 实际上是通过双向链表去实现的:
它包含一个非常重要的内部类:Entry。Entry是双向链表节点所对应的数据结构,它包括的属性有:当前节点所包含的值,上一个节点,下一个节点。
从LinkedList的实现方式中可以发现,它不存在LinkedList容量不足的问题。
LinkedList的克隆函数,即是将全部元素克隆到一个新的LinkedList对象中。
LinkedList实现java.io.Serializable。当写入到输出流时,先写入“容量”,再依次写入“每一个节点保护的值”;当读出输入流时,先读取“容量”,再依次读取“每一个元素”。
由于LinkedList实现了Deque,而Deque接口定义了在双端队列两端访问元素的方法。提供插入、移除和检查元素的方法。每种方法都存在两种形式:一种形式在操作失败时抛出异常,另一种形式返回一个特殊值(null 或 false,具体取决于操作)。
总结起来如下表格:
/*
第一个元素(头部) 最后一个元素(尾部)
抛出异常 特殊值 抛出异常 特殊值
插入 addFirst(e) offerFirst(e) addLast(e) offerLast(e)
移除 removeFirst() pollFirst() removeLast() pollLast()
检查 getFirst() peekFirst() getLast() peekLast()
*/
/*
队列方法 等效方法
add(e) addLast(e)
offer(e) offerLast(e)
remove() removeFirst()
poll() pollFirst()
element() getFirst()
peek() peekFirst()
*/
/*
栈方法 等效方法
push(e) addFirst(e)
pop() removeFirst()
peek() peekFirst()
*/
LinkedList遍历方式
LinkedList支持多种遍历方式。建议不要采用随机访问的方式去遍历LinkedList,而采用逐个遍历的方式。
for(Iterator iter = list.iterator(); iter.hasNext();)
iter.next();
int size = list.size();
for (int i=0; i<size; i++) {
list.get(i);
}
for (Integer integ:list)
;
while(list.pollFirst() != null)
;
while(list.pollLast() != null)
;
try {
while(list.removeFirst() != null)
;
} catch (NoSuchElementException e) {
}
try {
while(list.removeLast() != null)
;
} catch (NoSuchElementException e) {
}
遍历方式效率
iteratorLinkedListThruIterator:8 ms iteratorLinkedListThruForeach:3724 ms iteratorThroughFor2:5 ms iteratorThroughPollFirst:8 ms iteratorThroughPollLast:6 ms iteratorThroughRemoveFirst:2 ms iteratorThroughRemoveLast:2 ms
由此可见,遍历LinkedList时,使用removeFist()或removeLast()效率最高。但用它们遍历时,会删除原始数据;若单纯只读取,而不删除,应该使用第3种遍历方式。
无论如何,千万不要通过随机访问去遍历LinkedList!
Vector 是矢量队列,它是JDK1.0版本添加的类。继承于AbstractList,实现了List, RandomAccess, Cloneable这些接口。
Vector 继承了AbstractList,实现了List;所以,它是一个队列,支持相关的添加、删除、修改、遍历等功能。
Vector 实现了RandmoAccess接口,即提供了随机访问功能。RandmoAccess是java中用来被List实现,为List提供快速访问功能的。在Vector中,我们即可以通过元素的序号快速获取元素对象;这就是快速随机访问。
Vector 实现了Cloneable接口,即实现clone()函数。它能被克隆。
和ArrayList不同,Vector中的操作是线程安全的。
//Vector共有4个构造函数
// 默认构造函数
Vector()
// capacity是Vector的默认容量大小。当由于增加数据导致容量增加时,每次容量会增加一倍。
Vector(int capacity)
// capacity是Vector的默认容量大小,capacityIncrement是每次Vector容量增加时的增量值。
Vector(int capacity, int capacityIncrement)
// 创建一个包含collection的Vector
Vector(Collection<? extends E> collection)
synchronized boolean add(E object)
void add(int location, E object)
synchronized boolean addAll(Collection<? extends E> collection)
synchronized boolean addAll(int location, Collection<? extends E> collection)
synchronized void addElement(E object)
synchronized int capacity()
void clear()
synchronized Object clone()
boolean contains(Object object)
synchronized boolean containsAll(Collection<?> collection)
synchronized void copyInto(Object[] elements)
synchronized E elementAt(int location)
Enumeration<E> elements()
synchronized void ensureCapacity(int minimumCapacity)
synchronized boolean equals(Object object)
synchronized E firstElement()
E get(int location)
synchronized int hashCode()
synchronized int indexOf(Object object, int location)
int indexOf(Object object)
synchronized void insertElementAt(E object, int location)
synchronized boolean isEmpty()
synchronized E lastElement()
synchronized int lastIndexOf(Object object, int location)
synchronized int lastIndexOf(Object object)
synchronized E remove(int location)
boolean remove(Object object)
synchronized boolean removeAll(Collection<?> collection)
synchronized void removeAllElements()
synchronized boolean removeElement(Object object)
synchronized void removeElementAt(int location)
synchronized boolean retainAll(Collection<?> collection)
synchronized E set(int location, E object)
synchronized void setElementAt(E object, int location)
synchronized void setSize(int length)
synchronized int size()
synchronized List<E> subList(int start, int end)
synchronized <T> T[] toArray(T[] contents)
synchronized Object[] toArray()
synchronized String toString()
synchronized void trimToSize()
java.lang.Object
↳ java.util.AbstractCollection<E>
↳ java.util.AbstractList<E>
↳ java.util.Vector<E>
public class Vector<E>
extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
}
Vector与Collection关系如下图:
Vector的数据结构和ArrayList差不多,它包含了3个成员变量:elementData , elementCount, capacityIncrement。
elementData 是"Object[]类型的数组",它保存了添加到Vector中的元素。elementData是个动态数组,如果初始化Vector时,没指定动态数组的大小,则使用默认大小10。随着Vector中元素的增加,Vector的容量也会动态增长,capacityIncrement是与容量增长相关的增长系数,具体的增长方式,请参考源码分析中的ensureCapacity()函数。
elementCount 是动态数组的实际大小。
capacityIncrement 是动态数组的增长系数。如果在创建Vector时,指定了capacityIncrement的大小;则,每次当Vector中动态数组容量增加时,增加的大小都是capacityIncrement。
对Vector源码代码作出分析
package java.util;
public class Vector<E>
extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
// 保存Vector中数据的数组
protected Object[] elementData;
// 实际数据的数量
protected int elementCount;
// 容量增长系数
protected int capacityIncrement;
// Vector的序列版本号
private static final long serialVersionUID = -2767605614048989439L;
// Vector构造函数。默认容量是10。
public Vector() {
this(10);
}
// 指定Vector容量大小的构造函数
public Vector(int initialCapacity) {
this(initialCapacity, 0);
}
// 指定Vector"容量大小"和"增长系数"的构造函数
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
// 新建一个数组,数组容量是initialCapacity
this.elementData = new Object[initialCapacity];
// 设置容量增长系数
this.capacityIncrement = capacityIncrement;
}
// 指定集合的Vector构造函数。
public Vector(Collection<? extends E> c) {
// 获取“集合(c)”的数组,并将其赋值给elementData
elementData = c.toArray();
// 设置数组长度
elementCount = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
}
// 将数组Vector的全部元素都拷贝到数组anArray中
public synchronized void copyInto(Object[] anArray) {
System.arraycopy(elementData, 0, anArray, 0, elementCount);
}
// 将当前容量值设为 =实际元素个数
public synchronized void trimToSize() {
modCount++;
int oldCapacity = elementData.length;
if (elementCount < oldCapacity) {
elementData = Arrays.copyOf(elementData, elementCount);
}
}
// 确认“Vector容量”的帮助函数
private void ensureCapacityHelper(int minCapacity) {
int oldCapacity = elementData.length;
// 当Vector的容量不足以容纳当前的全部元素,增加容量大小。
// 若 容量增量系数>0(即capacityIncrement>0),则将容量增大当capacityIncrement
// 否则,将容量增大一倍。
if (minCapacity > oldCapacity) {
Object[] oldData = elementData;
int newCapacity = (capacityIncrement > 0) ?
(oldCapacity + capacityIncrement) : (oldCapacity * 2);
if (newCapacity < minCapacity) {
newCapacity = minCapacity;
}
elementData = Arrays.copyOf(elementData, newCapacity);
}
}
// 确定Vector的容量。
public synchronized void ensureCapacity(int minCapacity) {
// 将Vector的改变统计数+1
modCount++;
ensureCapacityHelper(minCapacity);
}
// 设置容量值为 newSize
public synchronized void setSize(int newSize) {
modCount++;
if (newSize > elementCount) {
// 若 "newSize 大于 Vector容量",则调整Vector的大小。
ensureCapacityHelper(newSize);
} else {
// 若 "newSize 小于/等于 Vector容量",则将newSize位置开始的元素都设置为null
for (int i = newSize ; i < elementCount ; i++) {
elementData[i] = null;
}
}
elementCount = newSize;
}
// 返回“Vector的总的容量”
public synchronized int capacity() {
return elementData.length;
}
// 返回“Vector的实际大小”,即Vector中元素个数
public synchronized int size() {
return elementCount;
}
// 判断Vector是否为空
public synchronized boolean isEmpty() {
return elementCount == 0;
}
// 返回“Vector中全部元素对应的Enumeration”
public Enumeration<E> elements() {
// 通过匿名类实现Enumeration
return new Enumeration<E>() {
int count = 0;
// 是否存在下一个元素
public boolean hasMoreElements() {
return count < elementCount;
}
// 获取下一个元素
public E nextElement() {
synchronized (Vector.this) {
if (count < elementCount) {
return (E)elementData[count++];
}
}
throw new NoSuchElementException("Vector Enumeration");
}
};
}
// 返回Vector中是否包含对象(o)
public boolean contains(Object o) {
return indexOf(o, 0) >= 0;
}
// 从index位置开始向后查找元素(o)。
// 若找到,则返回元素的索引值;否则,返回-1
public synchronized int indexOf(Object o, int index) {
if (o == null) {
// 若查找元素为null,则正向找出null元素,并返回它对应的序号
for (int i = index ; i < elementCount ; i++)
if (elementData[i]==null)
return i;
} else {
// 若查找元素不为null,则正向找出该元素,并返回它对应的序号
for (int i = index ; i < elementCount ; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
// 查找并返回元素(o)在Vector中的索引值
public int indexOf(Object o) {
return indexOf(o, 0);
}
// 从后向前查找元素(o)。并返回元素的索引
public synchronized int lastIndexOf(Object o) {
return lastIndexOf(o, elementCount-1);
}
// 从后向前查找元素(o)。开始位置是从前向后的第index个数;
// 若找到,则返回元素的“索引值”;否则,返回-1。
public synchronized int lastIndexOf(Object o, int index) {
if (index >= elementCount)
throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
if (o == null) {
// 若查找元素为null,则反向找出null元素,并返回它对应的序号
for (int i = index; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
// 若查找元素不为null,则反向找出该元素,并返回它对应的序号
for (int i = index; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
// 返回Vector中index位置的元素。
// 若index越界,则抛出异常
public synchronized E elementAt(int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
}
return (E)elementData[index];
}
// 获取Vector中的第一个元素。
// 若失败,则抛出异常!
public synchronized E firstElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return (E)elementData[0];
}
// 获取Vector中的最后一个元素。
// 若失败,则抛出异常!
public synchronized E lastElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return (E)elementData[elementCount - 1];
}
// 设置index位置的元素值为obj
public synchronized void setElementAt(E obj, int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
}
elementData[index] = obj;
}
// 删除index位置的元素
public synchronized void removeElementAt(int index) {
modCount++;
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
} else if (index < 0) {
throw new ArrayIndexOutOfBoundsException(index);
}
int j = elementCount - index - 1;
if (j > 0) {
System.arraycopy(elementData, index + 1, elementData, index, j);
}
elementCount--;
elementData[elementCount] = null; /* to let gc do its work */
}
// 在index位置处插入元素(obj)
public synchronized void insertElementAt(E obj, int index) {
modCount++;
if (index > elementCount) {
throw new ArrayIndexOutOfBoundsException(index
+ " > " + elementCount);
}
ensureCapacityHelper(elementCount + 1);
System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
elementData[index] = obj;
elementCount++;
}
// 将“元素obj”添加到Vector末尾
public synchronized void addElement(E obj) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = obj;
}
// 在Vector中查找并删除元素obj。
// 成功的话,返回true;否则,返回false。
public synchronized boolean removeElement(Object obj) {
modCount++;
int i = indexOf(obj);
if (i >= 0) {
removeElementAt(i);
return true;
}
return false;
}
// 删除Vector中的全部元素
public synchronized void removeAllElements() {
modCount++;
// 将Vector中的全部元素设为null
for (int i = 0; i < elementCount; i++)
elementData[i] = null;
elementCount = 0;
}
// 克隆函数
public synchronized Object clone() {
try {
Vector<E> v = (Vector<E>) super.clone();
// 将当前Vector的全部元素拷贝到v中
v.elementData = Arrays.copyOf(elementData, elementCount);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
}
// 返回Object数组
public synchronized Object[] toArray() {
return Arrays.copyOf(elementData, elementCount);
}
// 返回Vector的模板数组。所谓模板数组,即可以将T设为任意的数据类型
public synchronized <T> T[] toArray(T[] a) {
// 若数组a的大小 < Vector的元素个数;
// 则新建一个T[]数组,数组大小是“Vector的元素个数”,并将“Vector”全部拷贝到新数组中
if (a.length < elementCount)
return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
// 若数组a的大小 >= Vector的元素个数;
// 则将Vector的全部元素都拷贝到数组a中。
System.arraycopy(elementData, 0, a, 0, elementCount);
if (a.length > elementCount)
a[elementCount] = null;
return a;
}
// 获取index位置的元素
public synchronized E get(int index) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
return (E)elementData[index];
}
// 设置index位置的值为element。并返回index位置的原始值
public synchronized E set(int index, E element) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
Object oldValue = elementData[index];
elementData[index] = element;
return (E)oldValue;
}
// 将“元素e”添加到Vector最后。
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;
return true;
}
// 删除Vector中的元素o
public boolean remove(Object o) {
return removeElement(o);
}
// 在index位置添加元素element
public void add(int index, E element) {
insertElementAt(element, index);
}
// 删除index位置的元素,并返回index位置的原始值
public synchronized E remove(int index) {
modCount++;
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
Object oldValue = elementData[index];
int numMoved = elementCount - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--elementCount] = null; // Let gc do its work
return (E)oldValue;
}
// 清空Vector
public void clear() {
removeAllElements();
}
// 返回Vector是否包含集合c
public synchronized boolean containsAll(Collection<?> c) {
return super.containsAll(c);
}
// 将集合c添加到Vector中
public synchronized boolean addAll(Collection<? extends E> c) {
modCount++;
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);
// 将集合c的全部元素拷贝到数组elementData中
System.arraycopy(a, 0, elementData, elementCount, numNew);
elementCount += numNew;
return numNew != 0;
}
// 删除集合c的全部元素
public synchronized boolean removeAll(Collection<?> c) {
return super.removeAll(c);
}
// 删除“非集合c中的元素”
public synchronized boolean retainAll(Collection<?> c) {
return super.retainAll(c);
}
// 从index位置开始,将集合c添加到Vector中
public synchronized boolean addAll(int index, Collection<? extends E> c) {
modCount++;
if (index < 0 || index > elementCount)
throw new ArrayIndexOutOfBoundsException(index);
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);
int numMoved = elementCount - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew, numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
elementCount += numNew;
return numNew != 0;
}
// 返回两个对象是否相等
public synchronized boolean equals(Object o) {
return super.equals(o);
}
// 计算哈希值
public synchronized int hashCode() {
return super.hashCode();
}
// 调用父类的toString()
public synchronized String toString() {
return super.toString();
}
// 获取Vector中fromIndex(包括)到toIndex(不包括)的子集
public synchronized List<E> subList(int fromIndex, int toIndex) {
return Collections.synchronizedList(super.subList(fromIndex, toIndex), this);
}
// 删除Vector中fromIndex到toIndex的元素
protected synchronized void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = elementCount - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// Let gc do its work
int newElementCount = elementCount - (toIndex-fromIndex);
while (elementCount != newElementCount)
elementData[--elementCount] = null;
}
// java.io.Serializable的写入函数
private synchronized void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
s.defaultWriteObject();
}
}
总结:
Vector支持4种遍历方式。建议使用下面的第二种去遍历Vector,因为效率问题。
Integer value = null;
int size = vec.size();
for (int i=0; i<size; i++) {
value = (Integer)vec.get(i);
}
Integer value = null;
int size = vec.size();
for (int i=0; i<size; i++) {
value = (Integer)vec.get(i);
}
Integer value = null;
for (Integer integ:vec) {
value = integ;
}
Integer value = null;
Enumeration enu = vec.elements();
while (enu.hasMoreElements()) {
value = (Integer)enu.nextElement()
}
遍历方式效率
iteratorThroughRandomAccess:6 ms
iteratorThroughIterator:9 ms
iteratorThroughFor2:8 ms
iteratorThroughEnumeration:7 ms
总结:遍历Vector,使用索引的随机访问方式最快,使用迭代器最慢。
Stack是栈。它的特性是:先进后出(FILO, First In Last Out)。
java工具包中的Stack是继承于Vector(矢量队列)的,由于Vector是通过数组实现的,这就意味着,Stack也是通过数组实现的,而非链表。当然,我们也可以将LinkedList当作栈来使用!
java.lang.Object
↳ java.util.AbstractCollection<E>
↳ java.util.AbstractList<E>
↳ java.util.Vector<E>
↳ java.util.Stack<E>
public class Stack<E> extends Vector<E> {
}
Stack和Collection的关系如下图:
Stack只有一个默认构造函数,如下:
Stack()
Stack是栈,它常用的API如下:
boolean empty()
synchronized E peek()
synchronized E pop()
E push(E object)
synchronized int search(Object o)
由于Stack和继承于Vector,因此它也包含Vector中的全部API。
package java.util;
public
class Stack<E> extends Vector<E> {
// 版本ID。这个用于版本升级控制,这里不须理会!
private static final long serialVersionUID = 1224463164541339165L;
// 构造函数
public Stack() {
}
// push函数:将元素存入栈顶
public E push(E item) {
// 将元素存入栈顶。
// addElement()的实现在Vector.java中
addElement(item);
return item;
}
// pop函数:返回栈顶元素,并将其从栈中删除
public synchronized E pop() {
E obj;
int len = size();
obj = peek();
// 删除栈顶元素,removeElementAt()的实现在Vector.java中
removeElementAt(len - 1);
return obj;
}
// peek函数:返回栈顶元素,不执行删除操作
public synchronized E peek() {
int len = size();
if (len == 0)
throw new EmptyStackException();
// 返回栈顶元素,elementAt()具体实现在Vector.java中
return elementAt(len - 1);
}
// 栈是否为空
public boolean empty() {
return size() == 0;
}
// 查找“元素o”在栈中的位置:由栈底向栈顶方向数
public synchronized int search(Object o) {
// 获取元素索引,elementAt()具体实现在Vector.java中
int i = lastIndexOf(o);
if (i >= 0) {
return size() - i;
}
return -1;
}
}
总结:
Stack实际上也是通过数组去实现的。
执行push时(即,将元素推入栈中),是通过将元素追加的数组的末尾中。
执行peek时(即,取出栈顶元素,不执行删除),是返回数组末尾的元素。
执行pop时(即,取出栈顶元素,并将该元素从栈中删除),是取出数组末尾的元素,然后将该元素从数组中删除。
Stack继承于Vector,意味着Vector拥有的属性和功能,Stack都拥有。
先回顾一下List的框架图
学东西的最终目的是为了能够理解、使用它。下面先概括的说明一下各个List的使用场景,后面再分析原因。
如果涉及到“栈”、“队列”、“链表”等操作,应该考虑用List,具体的选择哪个List,根据下面的标准来取舍。
LinkedList:通过add(int index, E element)向LinkedList插入元素时。先是在双向链表中找到要插入节点的位置index;找到之后,再插入一个新节点。双向链表查找index位置的节点时,有一个加速动作:若index < 双向链表长度的1/2,则从前向后查找; 否则,从后向前查找。
ArrayList: 通过ensureCapacity(size+1) 的作用是“确认ArrayList的容量,若容量不够,则增加容量。”
真正耗时的操作是 System.arraycopy(elementData, index, elementData, index + 1, size - index);
Sun JDK包的java/lang/System.java中的arraycopy()声明如下:
public static native void arraycopy(Object src, int srcPos, Object dest, int destPos, int length);
arraycopy()是个JNI函数,它是在JVM中实现的。
实际上,我们只需要了解: *System.arraycopy(elementData, index, elementData, index + 1, size - index); 会移动index之后所有元素即可。*这就意味着,ArrayList的add(int index, E element)函数,会引起index之后所有元素的改变!
我们就能理解为什么LinkedList中插入元素很快,而ArrayList中插入元素很慢。
“删除元素”与“插入元素”的原理类似,这里就不再过多说明。
“为什么LinkedList中随机访问很慢,而ArrayList中随机访问很快”。
LinkedList:通过get(int index)获取LinkedList第index个元素时。先是在双向链表中找到要index位置的元素;找到之后再返回。(双向链表查找index位置的节点时,有一个加速动作:若index < 双向链表长度的1/2,则从前向后查找; 否则,从后向前查找。)
ArrayList:通过get(int index)获取ArrayList第index个元素时。直接返回数组中index位置的元素,而不需要像LinkedList一样进行查找。
它们都是List
它们都实现了RandomAccess和Cloneable接口
实现RandomAccess接口,意味着它们都支持快速随机访问;
实现Cloneable接口,意味着它们能克隆自己。
它们都是通过数组实现的,本质上都是动态数组
它们的默认数组容量是10
它们都支持Iterator和listIterator遍历
线程安全性不一样
构造函数个数不同
容量增加方式不同
对Enumeration的支持不同。Vector支持通过Enumeration去遍历,而List不支持
前面,我们已经系统的对List进行了学习。接下来,我们先学习Map,然后再学习Set;因为Set的实现类都是基于Map来实现的(如,HashSet是通过HashMap实现的,TreeSet是通过TreeMap实现的)。
首先,我们看看Map架构。
如上图:
Map的定义如下:
public interface Map<K,V> {
}
Map 是一个键值对(key-value)映射接口。Map映射中不能包含重复的键;每个键最多只能映射到一个值。
Map 接口提供三种collection 视图,允许以键集、值集或键-值映射关系集的形式查看某个映射的内容。
Map 映射顺序。有些实现类,可以明确保证其顺序,如 TreeMap;另一些映射实现则不保证顺序,如 HashMap 类。
Map 的实现类应该提供2个“标准的”构造方法:第一个,void(无参数)构造方法,用于创建空映射;**第二个,带有单个 Map 类型参数的构造方法,用于创建一个与其参数具有相同键-值映射关系的新映射。**实际上,后一个构造方法允许用户复制任意映射,生成所需类的一个等价映射。尽管无法强制执行此建议(因为接口不能包含构造方法),但是 JDK 中所有通用的映射实现都遵从它。
abstract void clear()
abstract boolean containsKey(Object key)
abstract boolean containsValue(Object value)
abstract Set<Entry<K, V>> entrySet()
abstract boolean equals(Object object)
abstract V get(Object key)
abstract int hashCode()
abstract boolean isEmpty()
abstract Set<K> keySet()
abstract V put(K key, V value)
abstract void putAll(Map<? extends K, ? extends V> map)
abstract V remove(Object key)
abstract int size()
abstract Collection<V> values()
说明:
Map提供接口分别用于返回 键集、值集或键-值映射关系集。
entrySet()用于返回键-值集的Set集合
keySet()用于返回键集的Set集合
values()用户返回值集的Collection集合
因为Map中不能包含重复的键;每个键最多只能映射到一个值。所以,键-值集、键集都是Set,值集是Collection。
Map提供了“键-值对”、“根据键获取值”、“删除键”、“获取容量大小”等方法。
Map.Entry的定义如下:
interface Entry<K,V> {
}
Map.Entry是Map中内部的一个接口,Map.Entry是键值对,Map通过 entrySet() 获取Map.Entry的键值对集合,从而通过该集合实现对键值对的操作。
Map.Entry的API
abstract boolean equals(Object object)
abstract K getKey()
abstract V getValue()
abstract int hashCode()
abstract V setValue(V object)
AbstractMap的定义如下:
public abstract class AbstractMap<K,V> implements Map<K,V> {
}
AbstractMap类提供 Map 接口的骨干实现,以最大限度地减少实现此接口所需的工作。
要实现不可修改的映射,编程人员只需扩展此类并提供 entrySet 方法的实现即可,该方法将返回映射的映射关系 set 视图。通常,返回的 set 将依次在 AbstractSet 上实现。此 set 不支持 add() 或 remove() 方法,其迭代器也不支持 remove() 方法。
要实现可修改的映射,编程人员必须另外重写此类的 put 方法(否则将抛出 UnsupportedOperationException),entrySet().iterator() 返回的迭代器也必须另外实现其 remove 方法。
abstract Set<Entry<K, V>> entrySet()
void clear()
boolean containsKey(Object key)
boolean containsValue(Object value)
boolean equals(Object object)
V get(Object key)
int hashCode()
boolean isEmpty()
Set<K> keySet()
V put(K key, V value)
void putAll(Map<? extends K, ? extends V> map)
V remove(Object key)
int size()
String toString()
Collection<V> values()
Object clone()
SortedMap的定义如下:
public interface SortedMap<K,V> extends Map<K,V> {
}
SortedMap是一个继承于Map接口的接口。它是一个有序的SortedMap键值映射。
SortedMap的排序方式有两种:自然排序 或者 用户指定比较器。 插入有序 SortedMap 的所有元素都必须实现 Comparable 接口(或者被指定的比较器所接受)。
另外,所有SortedMap 实现类都应该提供 4 个“标准”构造方法:
// 继承于Map的API
abstract void clear()
abstract boolean containsKey(Object key)
abstract boolean containsValue(Object value)
abstract Set<Entry<K, V>> entrySet()
abstract boolean equals(Object object)
abstract V get(Object key)
abstract int hashCode()
abstract boolean isEmpty()
abstract Set<K> keySet()
abstract V put(K key, V value)
abstract void putAll(Map<? extends K, ? extends V> map)
abstract V remove(Object key)
abstract int size()
abstract Collection<V> values()
// SortedMap新增的API
abstract Comparator<? super K> comparator()
abstract K firstKey()
abstract SortedMap<K, V> headMap(K endKey)
abstract K lastKey()
abstract SortedMap<K, V> subMap(K startKey, K endKey)
abstract SortedMap<K, V> tailMap(K startKey)
NavigableMap的定义如下:
public interface NavigableMap<K,V> extends SortedMap<K,V> {
}
NavigableMap是继承于SortedMap的接口。它是一个可导航的键-值对集合,具有了为给定搜索目标报告最接近匹配项的导航方法。
NavigableMap分别提供了获取“键”、“键-值对”、“键集”、“键-值对集”的相关方法。
abstract Entry<K, V> ceilingEntry(K key)
abstract Entry<K, V> firstEntry()
abstract Entry<K, V> floorEntry(K key)
abstract Entry<K, V> higherEntry(K key)
abstract Entry<K, V> lastEntry()
abstract Entry<K, V> lowerEntry(K key)
abstract Entry<K, V> pollFirstEntry()
abstract Entry<K, V> pollLastEntry()
abstract K ceilingKey(K key)
abstract K floorKey(K key)
abstract K higherKey(K key)
abstract K lowerKey(K key)
abstract NavigableSet<K> descendingKeySet()
abstract NavigableSet<K> navigableKeySet()
abstract NavigableMap<K, V> descendingMap()
abstract NavigableMap<K, V> headMap(K toKey, boolean inclusive)
abstract SortedMap<K, V> headMap(K toKey)
abstract SortedMap<K, V> subMap(K fromKey, K toKey)
abstract NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive)
abstract SortedMap<K, V> tailMap(K fromKey)
abstract NavigableMap<K, V> tailMap(K fromKey, boolean inclusive)
说明:
NavigableMap除了继承SortedMap的特性外,它的提供的功能可以分为4类:
Dictionary的定义如下:
public abstract class Dictionary<K,V> {
}
NavigableMap是JDK 1.0定义的键值对的接口,它也包括了操作键值对的基本函数。
abstract Enumeration<V> elements()
abstract V get(Object key)
abstract boolean isEmpty()
abstract Enumeration<K> keys()
abstract V put(K key, V value)
abstract V remove(Object key)
abstract int size()
HashMap 是一个散列表,它存储的内容是键值对(key-value)映射。
HashMap 继承于AbstractMap,实现了Map、Cloneable、java.io.Serializable接口。
HashMap 的实现不是同步的,这意味着它不是线程安全的。它的key、value都可以为null。此外,HashMap中的映射不是有序的。
HashMap 的实例有两个参数影响其性能:“初始容量” 和 “加载因子”。容量 是哈希表中桶的数量,初始容量 只是哈希表在创建时的容量。加载因子 是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数。
通常,默认加载因子是 0.75, 这是在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查询成本(在大多数 HashMap 类的操作中,包括 get 和 put 操作,都反映了这一点)。在设置初始容量时应该考虑到映射中所需的条目数及其加载因子,以便最大限度地减少 rehash 操作次数。如果初始容量大于最大条目数除以加载因子,则不会发生 rehash 操作。
HashMap共有4个构造函数,如下:
// 默认构造函数。
HashMap()
// 指定“容量大小”的构造函数
HashMap(int capacity)
// 指定“容量大小”和“加载因子”的构造函数
HashMap(int capacity, float loadFactor)
// 包含“子Map”的构造函数
HashMap(Map<? extends K, ? extends V> map)
void clear()
Object clone()
boolean containsKey(Object key)
boolean containsValue(Object value)
Set<Entry<K, V>> entrySet()
V get(Object key)
boolean isEmpty()
Set<K> keySet()
V put(K key, V value)
void putAll(Map<? extends K, ? extends V> map)
V remove(Object key)
int size()
Collection<V> values()
java.lang.Object
↳ java.util.AbstractMap<K, V>
↳ java.util.HashMap<K, V>
public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable {
}
HashMap与Map关系如下图:
[]
从图中可以看出:
HashMap继承于AbstractMap类,实现了Map接口。Map是"key-value键值对"接口,AbstractMap实现了"键值对"的通用函数接口。
HashMap是通过"拉链法"实现的哈希表。它包括几个重要的成员变量:table, size, threshold, loadFactor, modCount。
table是一个Entry[]数组类型,而Entry实际上就是一个单向链表。哈希表的"key-value键值对"都是存储在Entry数组中的。
size是HashMap的大小,它是HashMap保存的键值对的数量。
threshold是HashMap的阈值,用于判断是否需要调整HashMap的容量。threshold的值=“容量*加载因子”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
loadFactor就是加载因子。
modCount是用来实现fail-fast机制的。
为了更了解HashMap的原理,下面对HashMap源码代码作出分析。
package java.util;
import java.io.*;
public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable
{
// 默认的初始容量是16,必须是2的幂。
static final int DEFAULT_INITIAL_CAPACITY = 16;
// 最大容量(必须是2的幂且小于2的30次方,传入容量过大将被这个值替换)
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 存储数据的Entry数组,长度是2的幂。
// HashMap是采用拉链法实现的,每一个Entry本质上是一个单向链表
transient Entry[] table;
// HashMap的大小,它是HashMap保存的键值对的数量
transient int size;
// HashMap的阈值,用于判断是否需要调整HashMap的容量(threshold = 容量*加载因子)
int threshold;
// 加载因子实际大小
final float loadFactor;
// HashMap被改变的次数
transient volatile int modCount;
// 指定“容量大小”和“加载因子”的构造函数
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
// HashMap的最大容量只能是MAXIMUM_CAPACITY
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
// 找出“大于initialCapacity”的最小的2的幂
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
// 设置“加载因子”
this.loadFactor = loadFactor;
// 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
threshold = (int)(capacity * loadFactor);
// 创建Entry数组,用来保存数据
table = new Entry[capacity];
init();
}
// 指定“容量大小”的构造函数
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
// 默认构造函数。
public HashMap() {
// 设置“加载因子”
this.loadFactor = DEFAULT_LOAD_FACTOR;
// 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
// 创建Entry数组,用来保存数据
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();
}
// 包含“子Map”的构造函数
public HashMap(Map<? extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
// 将m中的全部元素逐个添加到HashMap中
putAllForCreate(m);
}
static int hash(int h) {
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
// 返回索引值
// h & (length-1)保证返回值的小于length
static int indexFor(int h, int length) {
return h & (length-1);
}
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
// 获取key对应的value
public V get(Object key) {
if (key == null)
return getForNullKey();
// 获取key的hash值
int hash = hash(key.hashCode());
// 在“该hash值对应的链表”上查找“键值等于key”的元素
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
return e.value;
}
return null;
}
// 获取“key为null”的元素的值
// HashMap将“key为null”的元素存储在table[0]位置!
private V getForNullKey() {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
return null;
}
// HashMap是否包含key
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
// 返回“键为key”的键值对
final Entry<K,V> getEntry(Object key) {
// 获取哈希值
// HashMap将“key为null”的元素存储在table[0]位置,“key不为null”的则调用hash()计算哈希值
int hash = (key == null) ? 0 : hash(key.hashCode());
// 在“该hash值对应的链表”上查找“键值等于key”的元素
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
// 将“key-value”添加到HashMap中
public V put(K key, V value) {
// 若“key为null”,则将该键值对添加到table[0]中。
if (key == null)
return putForNullKey(value);
// 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。
int hash = hash(key.hashCode());
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
// 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出!
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
// 若“该key”对应的键值对不存在,则将“key-value”添加到table中
modCount++;
addEntry(hash, key, value, i);
return null;
}
// putForNullKey()的作用是将“key为null”键值对添加到table[0]位置
private V putForNullKey(V value) {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
// 这里的完全不会被执行到!
modCount++;
addEntry(0, null, value, 0);
return null;
}
// 创建HashMap对应的“添加方法”,
// 它和put()不同。putForCreate()是内部方法,它被构造函数等调用,用来创建HashMap
// 而put()是对外提供的往HashMap中添加元素的方法。
private void putForCreate(K key, V value) {
int hash = (key == null) ? 0 : hash(key.hashCode());
int i = indexFor(hash, table.length);
// 若该HashMap表中存在“键值等于key”的元素,则替换该元素的value值
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
e.value = value;
return;
}
}
// 若该HashMap表中不存在“键值等于key”的元素,则将该key-value添加到HashMap中
createEntry(hash, key, value, i);
}
// 将“m”中的全部元素都添加到HashMap中。
// 该方法被内部的构造HashMap的方法所调用。
private void putAllForCreate(Map<? extends K, ? extends V> m) {
// 利用迭代器将元素逐个添加到HashMap中
for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
Map.Entry<? extends K, ? extends V> e = i.next();
putForCreate(e.getKey(), e.getValue());
}
}
// 重新调整HashMap的大小,newCapacity是调整后的单位
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
// 新建一个HashMap,将“旧HashMap”的全部元素添加到“新HashMap”中,
// 然后,将“新HashMap”赋值给“旧HashMap”。
Entry[] newTable = new Entry[newCapacity];
transfer(newTable);
table = newTable;
threshold = (int)(newCapacity * loadFactor);
}
// 将HashMap中的全部元素都添加到newTable中
void transfer(Entry[] newTable) {
Entry[] src = table;
int newCapacity = newTable.length;
for (int j = 0; j < src.length; j++) {
Entry<K,V> e = src[j];
if (e != null) {
src[j] = null;
do {
Entry<K,V> next = e.next;
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
} while (e != null);
}
}
}
// 将"m"的全部元素都添加到HashMap中
public void putAll(Map<? extends K, ? extends V> m) {
// 有效性判断
int numKeysToBeAdded = m.size();
if (numKeysToBeAdded == 0)
return;
// 计算容量是否足够,
// 若“当前实际容量 < 需要的容量”,则将容量x2。
if (numKeysToBeAdded > threshold) {
int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
if (targetCapacity > MAXIMUM_CAPACITY)
targetCapacity = MAXIMUM_CAPACITY;
int newCapacity = table.length;
while (newCapacity < targetCapacity)
newCapacity <<= 1;
if (newCapacity > table.length)
resize(newCapacity);
}
// 通过迭代器,将“m”中的元素逐个添加到HashMap中。
for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
Map.Entry<? extends K, ? extends V> e = i.next();
put(e.getKey(), e.getValue());
}
}
// 删除“键为key”元素
public V remove(Object key) {
Entry<K,V> e = removeEntryForKey(key);
return (e == null ? null : e.value);
}
// 删除“键为key”的元素
final Entry<K,V> removeEntryForKey(Object key) {
// 获取哈希值。若key为null,则哈希值为0;否则调用hash()进行计算
int hash = (key == null) ? 0 : hash(key.hashCode());
int i = indexFor(hash, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> e = prev;
// 删除链表中“键为key”的元素
// 本质是“删除单向链表中的节点”
while (e != null) {
Entry<K,V> next = e.next;
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
modCount++;
size--;
if (prev == e)
table[i] = next;
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e;
}
// 删除“键值对”
final Entry<K,V> removeMapping(Object o) {
if (!(o instanceof Map.Entry))
return null;
Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
Object key = entry.getKey();
int hash = (key == null) ? 0 : hash(key.hashCode());
int i = indexFor(hash, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> e = prev;
// 删除链表中的“键值对e”
// 本质是“删除单向链表中的节点”
while (e != null) {
Entry<K,V> next = e.next;
if (e.hash == hash && e.equals(entry)) {
modCount++;
size--;
if (prev == e)
table[i] = next;
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e;
}
// 清空HashMap,将所有的元素设为null
public void clear() {
modCount++;
Entry[] tab = table;
for (int i = 0; i < tab.length; i++)
tab[i] = null;
size = 0;
}
// 是否包含“值为value”的元素
public boolean containsValue(Object value) {
// 若“value为null”,则调用containsNullValue()查找
if (value == null)
return containsNullValue();
// 若“value不为null”,则查找HashMap中是否有值为value的节点。
Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (value.equals(e.value))
return true;
return false;
}
// 是否包含null值
private boolean containsNullValue() {
Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (e.value == null)
return true;
return false;
}
// 克隆一个HashMap,并返回Object对象
public Object clone() {
HashMap<K,V> result = null;
try {
result = (HashMap<K,V>)super.clone();
} catch (CloneNotSupportedException e) {
// assert false;
}
result.table = new Entry[table.length];
result.entrySet = null;
result.modCount = 0;
result.size = 0;
result.init();
// 调用putAllForCreate()将全部元素添加到HashMap中
result.putAllForCreate(this);
return result;
}
// Entry是单向链表。
// 它是 “HashMap链式存储法”对应的链表。
// 它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
// 指向下一个节点
Entry<K,V> next;
final int hash;
// 构造函数。
// 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)"
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
public final K getKey() {
return key;
}
public final V getValue() {
return value;
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
// 判断两个Entry是否相等
// 若两个Entry的“key”和“value”都相等,则返回true。
// 否则,返回false
public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}
// 实现hashCode()
public final int hashCode() {
return (key==null ? 0 : key.hashCode()) ^
(value==null ? 0 : value.hashCode());
}
public final String toString() {
return getKey() + "=" + getValue();
}
// 当向HashMap中添加元素时,绘调用recordAccess()。
// 这里不做任何处理
void recordAccess(HashMap<K,V> m) {
}
// 当从HashMap中删除元素时,绘调用recordRemoval()。
// 这里不做任何处理
void recordRemoval(HashMap<K,V> m) {
}
}
// 新增Entry。将“key-value”插入指定位置,bucketIndex是位置索引。
void addEntry(int hash, K key, V value, int bucketIndex) {
// 保存“bucketIndex”位置的值到“e”中
Entry<K,V> e = table[bucketIndex];
// 设置“bucketIndex”位置的元素为“新Entry”,
// 设置“e”为“新Entry的下一个节点”
table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
// 若HashMap的实际大小 不小于 “阈值”,则调整HashMap的大小
if (size++ >= threshold)
resize(2 * table.length);
}
// 创建Entry。将“key-value”插入指定位置,bucketIndex是位置索引。
// 它和addEntry的区别是:
// (01) addEntry()一般用在 新增Entry可能导致“HashMap的实际容量”超过“阈值”的情况下。
// 例如,我们新建一个HashMap,然后不断通过put()向HashMap中添加元素;
// put()是通过addEntry()新增Entry的。
// 在这种情况下,我们不知道何时“HashMap的实际容量”会超过“阈值”;
// 因此,需要调用addEntry()
// (02) createEntry() 一般用在 新增Entry不会导致“HashMap的实际容量”超过“阈值”的情况下。
// 例如,我们调用HashMap“带有Map”的构造函数,它绘将Map的全部元素添加到HashMap中;
// 但在添加之前,我们已经计算好“HashMap的容量和阈值”。也就是,可以确定“即使将Map中
// 的全部元素添加到HashMap中,都不会超过HashMap的阈值”。
// 此时,调用createEntry()即可。
void createEntry(int hash, K key, V value, int bucketIndex) {
// 保存“bucketIndex”位置的值到“e”中
Entry<K,V> e = table[bucketIndex];
// 设置“bucketIndex”位置的元素为“新Entry”,
// 设置“e”为“新Entry的下一个节点”
table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
size++;
}
// HashIterator是HashMap迭代器的抽象出来的父类,实现了公共了函数。
// 它包含“key迭代器(KeyIterator)”、“Value迭代器(ValueIterator)”和“Entry迭代器(EntryIterator)”3个子类。
private abstract class HashIterator<E> implements Iterator<E> {
// 下一个元素
Entry<K,V> next;
// expectedModCount用于实现fast-fail机制。
int expectedModCount;
// 当前索引
int index;
// 当前元素
Entry<K,V> current;
HashIterator() {
expectedModCount = modCount;
if (size > 0) {
// advance to first entry
Entry[] t = table;
// 将next指向table中第一个不为null的元素。
// 这里利用了index的初始值为0,从0开始依次向后遍历,直到找到不为null的元素就退出循环。
while (index < t.length && (next = t[index++]) == null)
;
}
}
public final boolean hasNext() {
return next != null;
}
// 获取下一个元素
final Entry<K,V> nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Entry<K,V> e = next;
if (e == null)
throw new NoSuchElementException();
// 注意!!!
// 一个Entry就是一个单向链表
// 若该Entry的下一个节点不为空,就将next指向下一个节点;
// 否则,将next指向下一个链表(也是下一个Entry)的不为null的节点。
if ((next = e.next) == null) {
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null)
;
}
current = e;
return e;
}
// 删除当前元素
public void remove() {
if (current == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Object k = current.key;
current = null;
HashMap.this.removeEntryForKey(k);
expectedModCount = modCount;
}
}
// value的迭代器
private final class ValueIterator extends HashIterator<V> {
public V next() {
return nextEntry().value;
}
}
// key的迭代器
private final class KeyIterator extends HashIterator<K> {
public K next() {
return nextEntry().getKey();
}
}
// Entry的迭代器
private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {
public Map.Entry<K,V> next() {
return nextEntry();
}
}
// 返回一个“key迭代器”
Iterator<K> newKeyIterator() {
return new KeyIterator();
}
// 返回一个“value迭代器”
Iterator<V> newValueIterator() {
return new ValueIterator();
}
// 返回一个“entry迭代器”
Iterator<Map.Entry<K,V>> newEntryIterator() {
return new EntryIterator();
}
// HashMap的Entry对应的集合
private transient Set<Map.Entry<K,V>> entrySet = null;
// 返回“key的集合”,实际上返回一个“KeySet对象”
public Set<K> keySet() {
Set<K> ks = keySet;
return (ks != null ? ks : (keySet = new KeySet()));
}
// Key对应的集合
// KeySet继承于AbstractSet,说明该集合中没有重复的Key。
private final class KeySet extends AbstractSet<K> {
public Iterator<K> iterator() {
return newKeyIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
return HashMap.this.removeEntryForKey(o) != null;
}
public void clear() {
HashMap.this.clear();
}
}
// 返回“value集合”,实际上返回的是一个Values对象
public Collection<V> values() {
Collection<V> vs = values;
return (vs != null ? vs : (values = new Values()));
}
// “value集合”
// Values继承于AbstractCollection,不同于“KeySet继承于AbstractSet”,
// Values中的元素能够重复。因为不同的key可以指向相同的value。
private final class Values extends AbstractCollection<V> {
public Iterator<V> iterator() {
return newValueIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
HashMap.this.clear();
}
}
// 返回“HashMap的Entry集合”
public Set<Map.Entry<K,V>> entrySet() {
return entrySet0();
}
// 返回“HashMap的Entry集合”,它实际是返回一个EntrySet对象
private Set<Map.Entry<K,V>> entrySet0() {
Set<Map.Entry<K,V>> es = entrySet;
return es != null ? es : (entrySet = new EntrySet());
}
// EntrySet对应的集合
// EntrySet继承于AbstractSet,说明该集合中没有重复的EntrySet。
private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator<Map.Entry<K,V>> iterator() {
return newEntryIterator();
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<K,V> e = (Map.Entry<K,V>) o;
Entry<K,V> candidate = getEntry(e.getKey());
return candidate != null && candidate.equals(e);
}
public boolean remove(Object o) {
return removeMapping(o) != null;
}
public int size() {
return size;
}
public void clear() {
HashMap.this.clear();
}
}
// java.io.Serializable的写入函数
// 将HashMap的“总的容量,实际容量,所有的Entry”都写入到输出流中
private void writeObject(java.io.ObjectOutputStream s)
throws IOException
{
Iterator<Map.Entry<K,V>> i =
(size > 0) ? entrySet0().iterator() : null;
// Write out the threshold, loadfactor, and any hidden stuff
s.defaultWriteObject();
// Write out number of buckets
s.writeInt(table.length);
// Write out size (number of Mappings)
s.writeInt(size);
// Write out keys and values (alternating)
if (i != null) {
while (i.hasNext()) {
Map.Entry<K,V> e = i.next();
s.writeObject(e.getKey());
s.writeObject(e.getValue());
}
}
}
private static final long serialVersionUID = 362498820763181265L;
// java.io.Serializable的读取函数:根据写入方式读出
// 将HashMap的“总的容量,实际容量,所有的Entry”依次读出
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException
{
// Read in the threshold, loadfactor, and any hidden stuff
s.defaultReadObject();
// Read in number of buckets and allocate the bucket array;
int numBuckets = s.readInt();
table = new Entry[numBuckets];
init(); // Give subclass a chance to do its thing.
// Read in size (number of Mappings)
int size = s.readInt();
// Read the keys and values, and put the mappings in the HashMap
for (int i=0; i<size; i++) {
K key = (K) s.readObject();
V value = (V) s.readObject();
putForCreate(key, value);
}
}
// 返回“HashMap总的容量”
int capacity() {
return table.length; }
// 返回“HashMap的加载因子”
float loadFactor() {
return loadFactor; }
}
说明:
在详细介绍HashMap的代码之前,我们需要了解:HashMap就是一个散列表,它是通过“拉链法”解决哈希冲突的。
还需要再补充说明的一点是影响HashMap性能的有两个参数:初始容量(initialCapacity) 和加载因子(loadFactor)。容量 是哈希表中桶的数量,初始容量只是哈希表在创建时的容量。加载因子 是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数。
transient Entry[] table;
HashMap中的key-value都是存储在Entry数组中的。
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
// 指向下一个节点
Entry<K,V> next;
final int hash;
// 构造函数。
// 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)"
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
public final K getKey() {
return key;
}
public final V getValue() {
return value;
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
// 判断两个Entry是否相等
// 若两个Entry的“key”和“value”都相等,则返回true。
// 否则,返回false
public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}
// 实现hashCode()
public final int hashCode() {
return (key==null ? 0 : key.hashCode()) ^
(value==null ? 0 : value.hashCode());
}
public final String toString() {
return getKey() + "=" + getValue();
}
// 当向HashMap中添加元素时,绘调用recordAccess()。
// 这里不做任何处理
void recordAccess(HashMap<K,V> m) {
}
// 当从HashMap中删除元素时,绘调用recordRemoval()。
// 这里不做任何处理
void recordRemoval(HashMap<K,V> m) {
}
}
从中,我们可以看出 Entry 实际上就是一个单向链表。这也是为什么我们说HashMap是通过拉链法解决哈希冲突的。
Entry 实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数。这些都是基本的读取/修改key、value值的函数。
// 默认构造函数。
public HashMap() {
// 设置“加载因子”
this.loadFactor = DEFAULT_LOAD_FACTOR;
// 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
// 创建Entry数组,用来保存数据
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();
}
// 指定“容量大小”和“加载因子”的构造函数
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
// HashMap的最大容量只能是MAXIMUM_CAPACITY
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
// Find a power of 2 >= initialCapacity
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
// 设置“加载因子”
this.loadFactor = loadFactor;
// 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
threshold = (int)(capacity * loadFactor);
// 创建Entry数组,用来保存数据
table = new Entry[capacity];
init();
}
// 指定“容量大小”的构造函数
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
// 包含“子Map”的构造函数
public HashMap(Map<? extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
// 将m中的全部元素逐个添加到HashMap中
putAllForCreate(m);
}
clear()
containsKey()
containsValue()
containsValue() 的作用是判断HashMap是否包含“值为value”的元素。
containsNullValue()分为两步进行处理:第一,若“value为null”,则调用containsNullValue()。第二,若“value不为null”,则查找HashMap中是否有值为value的节点。
containsNullValue() 的作用判断HashMap中是否包含“值为null”的元素。
entrySet()、values()、keySet()
它们3个的原理类似,这里以entrySet()为例来说明。
entrySet()的作用是返回“HashMap中所有Entry的集合”,它是一个集合。
HashMap是如何通过entrySet()遍历的:
entrySet()实际上是通过newEntryIterator()实现的。
当我们通过entrySet()获取到的Iterator的next()方法去遍历HashMap时,实际上调用的是 nextEntry() 。而nextEntry()的实现方式,先遍历Entry(根据Entry在table中的序号,从小到大的遍历);然后对每个Entry(即每个单向链表),逐个遍历。
get()
put()
putAll()
remove()
HashMap实现了Cloneable接口,即实现了clone()方法。
clone()方法的作用很简单,就是克隆一个HashMap对象并返回。
// 克隆一个HashMap,并返回Object对象
public Object clone() {
HashMap<K,V> result = null;
try {
result = (HashMap<K,V>)super.clone();
} catch (CloneNotSupportedException e) {
// assert false;
}
result.table = new Entry[table.length];
result.entrySet = null;
result.modCount = 0;
result.size = 0;
result.init();
// 调用putAllForCreate()将全部元素添加到HashMap中
result.putAllForCreate(this);
return result;
}
HashMap实现java.io.Serializable,分别实现了串行读取、写入功能。
第一步:根据entrySet()获取HashMap的“键值对”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设map是HashMap对象
// map中的key是String类型,value是Integer类型
Integer integ = null;
Iterator iter = map.entrySet().iterator();
while(iter.hasNext()) {
Map.Entry entry = (Map.Entry)iter.next();
// 获取key
key = (String)entry.getKey();
// 获取value
integ = (Integer)entry.getValue();
}
第一步:根据keySet()获取HashMap的“键”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设map是HashMap对象
// map中的key是String类型,value是Integer类型
String key = null;
Integer integ = null;
Iterator iter = map.keySet().iterator();
while (iter.hasNext()) {
// 获取key
key = (String)iter.next();
// 根据key,获取value
integ = (Integer)map.get(key);
}
第一步:根据value()获取HashMap的“值”的集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设map是HashMap对象
// map中的key是String类型,value是Integer类型
Integer value = null;
Collection c = map.values();
Iterator iter= c.iterator();
while (iter.hasNext()) {
value = (Integer)iter.next();
}
和HashMap一样,Hashtable 也是一个散列表,它存储的内容是键值对(key-value)映射。
Hashtable 继承于Dictionary,实现了Map、Cloneable、java.io.Serializable接口。
Hashtable 的函数都是同步的,这意味着它是线程安全的。它的key、value都不可以为null。此外,Hashtable中的映射不是有序的。
Hashtable 的实例有两个参数影响其性能:初始容量 和 加载因子。容量 是哈希表中桶 的数量,初始容量 就是哈希表创建时的容量。注意,哈希表的状态为 open:在发生“哈希冲突”的情况下,单个桶会存储多个条目,这些条目必须按顺序搜索。加载因子 是对哈希表在其容量自动增加之前可以达到多满的一个尺度。初始容量和加载因子这两个参数只是对该实现的提示。关于何时以及是否调用 rehash 方法的具体细节则依赖于该实现。
通常,默认加载因子是 0.75, 这是在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查找某个条目的时间(在大多数 Hashtable 操作中,包括 get 和 put 操作,都反映了这一点)。
// 默认构造函数。
public Hashtable()
// 指定“容量大小”的构造函数
public Hashtable(int initialCapacity)
// 指定“容量大小”和“加载因子”的构造函数
public Hashtable(int initialCapacity, float loadFactor)
// 包含“子Map”的构造函数
public Hashtable(Map<? extends K, ? extends V> t)
synchronized void clear()
synchronized Object clone()
boolean contains(Object value)
synchronized boolean containsKey(Object key)
synchronized boolean containsValue(Object value)
synchronized Enumeration<V> elements()
synchronized Set<Entry<K, V>> entrySet()
synchronized boolean equals(Object object)
synchronized V get(Object key)
synchronized int hashCode()
synchronized boolean isEmpty()
synchronized Set<K> keySet()
synchronized Enumeration<K> keys()
synchronized V put(K key, V value)
synchronized void putAll(Map<? extends K, ? extends V> map)
synchronized V remove(Object key)
synchronized int size()
synchronized String toString()
synchronized Collection<V> values()
java.lang.Object
↳ java.util.Dictionary<K, V>
↳ java.util.Hashtable<K, V>
public class Hashtable<K,V> extends Dictionary<K,V>
implements Map<K,V>, Cloneable, java.io.Serializable {
}
Hashtable与Map关系如下图:
从图中可以看出:
Hashtable继承于Dictionary类,实现了Map接口。Map是"key-value键值对"接口,Dictionary是声明了操作"键值对"函数接口的抽象类。
Hashtable是通过"拉链法"实现的哈希表。它包括几个重要的成员变量:table, count, threshold, loadFactor, modCount。
private transient Entry[] table;
Hashtable中的key-value都是存储在table数组中的。
private static class Entry<K,V> implements Map.Entry<K,V> {
// 哈希值
int hash;
K key;
V value;
// 指向的下一个Entry,即链表的下一个节点
Entry<K,V> next;
// 构造函数
protected Entry(int hash, K key, V value, Entry<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
protected Object clone() {
return new Entry<K,V>(hash, key, value,
(next==null ? null : (Entry<K,V>) next.clone()));
}
public K getKey() {
return key;
}
public V getValue() {
return value;
}
// 设置value。若value是null,则抛出异常。
public V setValue(V value) {
if (value == null)
throw new NullPointerException();
V oldValue = this.value;
this.value = value;
return oldValue;
}
// 覆盖equals()方法,判断两个Entry是否相等。
// 若两个Entry的key和value都相等,则认为它们相等。
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&
(value==null ? e.getValue()==null : value.equals(e.getValue()));
}
public int hashCode() {
return hash ^ (value==null ? 0 : value.hashCode());
}
public String toString() {
return key.toString()+"="+value.toString();
}
}
我们可以看出 Entry 实际上就是一个单向链表。这也是为什么我们说Hashtable是通过拉链法解决哈希冲突的。
Entry 实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数。这些都是基本的读取/修改key、value值的函数。
// 默认构造函数。
public Hashtable() {
// 默认构造函数,指定的容量大小是11;加载因子是0.75
this(11, 0.75f);
}
// 指定“容量大小”的构造函数
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
}
// 指定“容量大小”和“加载因子”的构造函数
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: "+loadFactor);
if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry[initialCapacity];
threshold = (int)(initialCapacity * loadFactor);
}
// 包含“子Map”的构造函数
public Hashtable(Map<? extends K, ? extends V> t) {
this(Math.max(2*t.size(), 11), 0.75f);
// 将“子Map”的全部元素都添加到Hashtable中
putAll(t);
}
clear() 的作用是清空Hashtable。它是将Hashtable的table数组的值全部设为null
public synchronized void clear() {
Entry tab[] = table;
modCount++;
for (int index = tab.length; --index >= 0; )
tab[index] = null;
count = 0;
}
contains() 和 containsValue() 的作用都是判断Hashtable是否包含“值(value)”
public boolean containsValue(Object value) {
return contains(value);
}
public synchronized boolean contains(Object value) {
// Hashtable中“键值对”的value不能是null,
// 若是null的话,抛出异常!
if (value == null) {
throw new NullPointerException();
}
// 从后向前遍历table数组中的元素(Entry)
// 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于value
Entry tab[] = table;
for (int i = tab.length ; i-- > 0 ;) {
for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {
if (e.value.equals(value)) {
return true;
}
}
}
return false;
}
containsKey() 的作用是判断Hashtable是否包含key
public synchronized boolean containsKey(Object key) {
Entry tab[] = table;
int hash = key.hashCode();
// 计算索引值,
// % tab.length 的目的是防止数据越界
int index = (hash & 0x7FFFFFFF) % tab.length;
// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return true;
}
}
return false;
}
elements() 的作用是返回“所有value”的枚举对象
public synchronized Enumeration<V> elements() {
return this.<V>getEnumeration(VALUES);
}
// 获取Hashtable的枚举类对象
private <T> Enumeration<T> getEnumeration(int type) {
if (count == 0) {
return (Enumeration<T>)emptyEnumerator;
} else {
return new Enumerator<T>(type, false);
}
}
从中,我们可以看出:
emptyEnumerator对象是如何实现的
private static Enumeration emptyEnumerator = new EmptyEnumerator();
// 空枚举类
// 当Hashtable的实际大小为0;此时,又要通过Enumeration遍历Hashtable时,返回的是“空枚举类”的对象。
private static class EmptyEnumerator implements Enumeration<Object> {
EmptyEnumerator() {
}
// 空枚举类的hasMoreElements() 始终返回false
public boolean hasMoreElements() {
return false;
}
// 空枚举类的nextElement() 抛出异常
public Object nextElement() {
throw new NoSuchElementException("Hashtable Enumerator");
}
}
Enumeration类
Enumerator的作用是**提供了“通过elements()遍历Hashtable的接口” 和 “通过entrySet()遍历Hashtable的接口”。**因为,它同时实现了 “Enumerator接口”和“Iterator接口”。
private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
// 指向Hashtable的table
Entry[] table = Hashtable.this.table;
// Hashtable的总的大小
int index = table.length;
Entry<K,V> entry = null;
Entry<K,V> lastReturned = null;
int type;
// Enumerator是 “迭代器(Iterator)” 还是 “枚举类(Enumeration)”的标志
// iterator为true,表示它是迭代器;否则,是枚举类。
boolean iterator;
// 在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。
protected int expectedModCount = modCount;
Enumerator(int type, boolean iterator) {
this.type = type;
this.iterator = iterator;
}
// 从遍历table的数组的末尾向前查找,直到找到不为null的Entry。
public boolean hasMoreElements() {
Entry<K,V> e = entry;
int i = index;
Entry[] t = table;
/* Use locals for faster loop iteration */
while (e == null && i > 0) {
e = t[--i];
}
entry = e;
index = i;
return e != null;
}
// 获取下一个元素
// 注意:从hasMoreElements() 和nextElement() 可以看出“Hashtable的elements()遍历方式”
// 首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。
// 然后,依次向后遍历单向链表Entry。
public T nextElement() {
Entry<K,V> et = entry;
int i = index;
Entry[] t = table;
/* Use locals for faster loop iteration */
while (et == null && i > 0) {
et = t[--i];
}
entry = et;
index = i;
if (et != null) {
Entry<K,V> e = lastReturned = entry;
entry = e.next;
return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
}
throw new NoSuchElementException("Hashtable Enumerator");
}
// 迭代器Iterator的判断是否存在下一个元素
// 实际上,它是调用的hasMoreElements()
public boolean hasNext() {
return hasMoreElements();
}
// 迭代器获取下一个元素
// 实际上,它是调用的nextElement()
public T next() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
return nextElement();
}
// 迭代器的remove()接口。
// 首先,它在table数组中找出要删除元素所在的Entry,
// 然后,删除单向链表Entry中的元素。
public void remove() {
if (!iterator)
throw new UnsupportedOperationException();
if (lastReturned == null)
throw new IllegalStateException("Hashtable Enumerator");
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
synchronized(Hashtable.this) {
Entry[] tab = Hashtable.this.table;
int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;
for (Entry<K,V> e = tab[index], prev = null; e != null;
prev = e, e = e.next) {
if (e == lastReturned) {
modCount++;
expectedModCount++;
if (prev == null)
tab[index] = e.next;
else
prev.next = e.next;
count--;
lastReturned = null;
return;
}
}
throw new ConcurrentModificationException();
}
}
}
entrySet(), keySet(), keys(), values()的实现方法和elements()差不多,而且源码中已经明确的给出了注释。这里就不再做过多说明了。
get() 的作用就是获取key对应的value,没有的话返回null
public synchronized V get(Object key) {
Entry tab[] = table;
int hash = key.hashCode();
// 计算索引值,
int index = (hash & 0x7FFFFFFF) % tab.length;
// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return e.value;
}
}
return null;
}
put() 的作用是对外提供接口,让Hashtable对象可以通过put()将“key-value”添加到Hashtable中。
public synchronized V put(K key, V value) {
// Hashtable中不能插入value为null的元素!!!
if (value == null) {
throw new NullPointerException();
}
// 若“Hashtable中已存在键为key的键值对”,
// 则用“新的value”替换“旧的value”
Entry tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
V old = e.value;
e.value = value;
return old;
}
}
// 若“Hashtable中不存在键为key的键值对”,
// (01) 将“修改统计数”+1
modCount++;
// (02) 若“Hashtable实际容量” > “阈值”(阈值=总的容量 * 加载因子)
// 则调整Hashtable的大小
if (count >= threshold) {
// Rehash the table if the threshold is exceeded
rehash();
tab = table;
index = (hash & 0x7FFFFFFF) % tab.length;
}
// (03) 将“Hashtable中index”位置的Entry(链表)保存到e中
Entry<K,V> e = tab[index];
// (04) 创建“新的Entry节点”,并将“新的Entry”插入“Hashtable的index位置”,并设置e为“新的Entry”的下一个元素(即“新Entry”为链表表头)。
tab[index] = new Entry<K,V>(hash, key, value, e);
// (05) 将“Hashtable的实际容量”+1
count++;
return null;
}
putAll() 的作用是将“Map(t)”的中全部元素逐一添加到Hashtable中
public synchronized void putAll(Map<? extends K, ? extends V> t) {
for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
put(e.getKey(), e.getValue());
}
remove() 的作用就是删除Hashtable中键为key的元素
public synchronized V remove(Object key) {
Entry tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
// 找到“key对应的Entry(链表)”
// 然后在链表中找出要删除的节点,并删除该节点。
for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
V oldValue = e.value;
e.value = null;
return oldValue;
}
}
return null;
}
Hashtable实现了Cloneable接口,即实现了clone()方法。
clone()方法的作用很简单,就是克隆一个Hashtable对象并返回。
// 克隆一个Hashtable,并以Object的形式返回。
public synchronized Object clone() {
try {
Hashtable<K,V> t = (Hashtable<K,V>) super.clone();
t.table = new Entry[table.length];
for (int i = table.length ; i-- > 0 ; ) {
t.table[i] = (table[i] != null)
? (Entry<K,V>) table[i].clone() : null;
}
t.keySet = null;
t.entrySet = null;
t.values = null;
t.modCount = 0;
return t;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
}
Hashtable实现java.io.Serializable,分别实现了串行读取、写入功能。
串行写入函数就是将Hashtable的“总的容量,实际容量,所有的Entry”都写入到输出流中
串行读取函数:根据写入方式读出将Hashtable的“总的容量,实际容量,所有的Entry”依次读出
private synchronized void writeObject(java.io.ObjectOutputStream s)
throws IOException
{
// Write out the length, threshold, loadfactor
s.defaultWriteObject();
// Write out length, count of elements and then the key/value objects
s.writeInt(table.length);
s.writeInt(count);
for (int index = table.length-1; index >= 0; index--) {
Entry entry = table[index];
while (entry != null) {
s.writeObject(entry.key);
s.writeObject(entry.value);
entry = entry.next;
}
}
}
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException
{
// Read in the length, threshold, and loadfactor
s.defaultReadObject();
// Read the original length of the array and number of elements
int origlength = s.readInt();
int elements = s.readInt();
// Compute new size with a bit of room 5% to grow but
// no larger than the original size. Make the length
// odd if it's large enough, this helps distribute the entries.
// Guard against the length ending up zero, that's not valid.
int length = (int)(elements * loadFactor) + (elements / 20) + 3;
if (length > elements && (length & 1) == 0)
length--;
if (origlength > 0 && length > origlength)
length = origlength;
Entry[] table = new Entry[length];
count = 0;
// Read the number of elements and then all the key/value objects
for (; elements > 0; elements--) {
K key = (K)s.readObject();
V value = (V)s.readObject();
// synch could be eliminated for performance
reconstitutionPut(table, key, value);
}
this.table = table;
}
遍历Hashtable的键值对
第一步:根据entrySet()获取Hashtable的“键值对”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设table是Hashtable对象
// table中的key是String类型,value是Integer类型
Integer integ = null;
Iterator iter = table.entrySet().iterator();
while(iter.hasNext()) {
Map.Entry entry = (Map.Entry)iter.next();
// 获取key
key = (String)entry.getKey();
// 获取value
integ = (Integer)entry.getValue();
}
通过Iterator遍历Hashtable的键
第一步:根据keySet()获取Hashtable的“键”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设table是Hashtable对象
// table中的key是String类型,value是Integer类型
String key = null;
Integer integ = null;
Iterator iter = table.keySet().iterator();
while (iter.hasNext()) {
// 获取key
key = (String)iter.next();
// 根据key,获取value
integ = (Integer)table.get(key);
}
通过Iterator遍历Hashtable的值
第一步:根据value()获取Hashtable的“值”的集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设table是Hashtable对象
// table中的key是String类型,value是Integer类型
Integer value = null;
Collection c = table.values();
Iterator iter= c.iterator();
while (iter.hasNext()) {
value = (Integer)iter.next();
}
通过Enumeration遍历Hashtable的键
第一步:根据keys()获取Hashtable的集合。
第二步:通过Enumeration遍历“第一步”得到的集合。
Enumeration enu = table.keys();
while(enu.hasMoreElements()) {
System.out.println(enu.nextElement());
}
通过Enumeration遍历Hashtable的值
第一步:根据elements()获取Hashtable的集合。
第二步:通过Enumeration遍历“第一步”得到的集合。
Enumeration enu = table.elements();
while(enu.hasMoreElements()) {
System.out.println(enu.nextElement());
}
TreeMap 是一个有序的key-value集合,它是通过红黑树实现的。
TreeMap 继承于AbstractMap,所以它是一个Map,即一个key-value集合。
TreeMap 实现了NavigableMap接口,意味着它支持一系列的导航方法。比如返回有序的key集合。
TreeMap 实现了Cloneable接口,意味着它能被克隆。
TreeMap 实现了java.io.Serializable接口,意味着它支持序列化。
TreeMap基于红黑树(Red-Black tree)实现。该映射根据其键的自然顺序进行排序,或者根据创建映射时提供的 Comparator 进行排序,具体取决于使用的构造方法。
TreeMap的基本操作 containsKey、get、put 和 remove 的时间复杂度是 log(n) 。
另外,TreeMap是非同步的。 它的iterator 方法返回的迭代器是fail-fast的。
// 默认构造函数。使用该构造函数,TreeMap中的元素按照自然排序进行排列。
TreeMap()
// 创建的TreeMap包含Map
TreeMap(Map<? extends K, ? extends V> copyFrom)
// 指定Tree的比较器
TreeMap(Comparator<? super K> comparator)
// 创建的TreeSet包含copyFrom
TreeMap(SortedMap<K, ? extends V> copyFrom)
Entry<K, V> ceilingEntry(K key)
K ceilingKey(K key)
void clear()
Object clone()
Comparator<? super K> comparator()
boolean containsKey(Object key)
NavigableSet<K> descendingKeySet()
NavigableMap<K, V> descendingMap()
Set<Entry<K, V>> entrySet()
Entry<K, V> firstEntry()
K firstKey()
Entry<K, V> floorEntry(K key)
K floorKey(K key)
V get(Object key)
NavigableMap<K, V> headMap(K to, boolean inclusive)
SortedMap<K, V> headMap(K toExclusive)
Entry<K, V> higherEntry(K key)
K higherKey(K key)
boolean isEmpty()
Set<K> keySet()
Entry<K, V> lastEntry()
K lastKey()
Entry<K, V> lowerEntry(K key)
K lowerKey(K key)
NavigableSet<K> navigableKeySet()
Entry<K, V> pollFirstEntry()
Entry<K, V> pollLastEntry()
V put(K key, V value)
V remove(Object key)
int size()
SortedMap<K, V> subMap(K fromInclusive, K toExclusive)
NavigableMap<K, V> subMap(K from, boolean fromInclusive, K to, boolean toInclusive)
NavigableMap<K, V> tailMap(K from, boolean inclusive)
SortedMap<K, V> tailMap(K fromInclusive)
java.lang.Object
↳ java.util.AbstractMap<K, V>
↳ java.util.TreeMap<K, V>
public class TreeMap<K,V>
extends AbstractMap<K,V>
implements NavigableMap<K,V>, Cloneable, java.io.Serializable {
}
TreeMap与Map关系如下图:
从图中可以看出:
TreeMap中于红黑树相关的主要函数有:
数据结构
private static final boolean RED = false;
private static final boolean BLACK = true;
static final class Entry<K,V> implements Map.Entry<K,V> {
... }
Entry包含了6个部分内容:key(键)、value(值)、left(左孩子)、right(右孩子)、parent(父节点)、color(颜色)
Entry节点根据key进行排序,Entry节点包含的内容为value。
相关操作
private void rotateLeft(Entry<K,V> p) {
... }
private void rotateRight(Entry<K,V> p) {
... }
public V put(K key, V value) {
... }
private void fixAfterInsertion(Entry<K,V> x) {
... }
private void deleteEntry(Entry<K,V> p) {
... }
删除修正操作
红黑树执行删除之后,要执行“删除修正操作”。
目的是保证:红黑树删除节点之后,仍然是一颗红黑树
private void fixAfterDeletion(Entry<K,V> x) {
... }
关于红黑树部分,这里主要是指出了TreeMap中那些是红黑树的主要相关内容。具体的红黑树相关操作API,这里没有详细说明,因为它们仅仅只是将算法翻译成代码。
使用默认构造函数构造TreeMap时,使用java的默认的比较器比较Key的大小,从而对TreeMap进行排序。
public TreeMap() {
comparator = null;
}
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
}
public TreeMap(Map<? extends K, ? extends V> m) {
comparator = null;
putAll(m);
}
该构造函数会调用putAll()将m中的所有元素添加到TreeMap中。putAll()源码如下:
public void putAll(Map<? extends K, ? extends V> m) {
for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
put(e.getKey(), e.getValue());
}
从中,我们可以看出putAll()就是将m中的key-value逐个的添加到TreeMap中。
public TreeMap(SortedMap<K, ? extends V> m) {
comparator = m.comparator();
try {
buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
}
该构造函数不同于上一个构造函数,在上一个构造函数中传入的参数是Map,Map不是有序的,所以要逐个添加。
而该构造函数的参数是SortedMap是一个有序的Map,我们通过buildFromSorted()来创建对应的Map。
buildFromSorted涉及到的代码如下:
// 根据已经一个排好序的map创建一个TreeMap
// 将map中的元素逐个添加到TreeMap中,并返回map的中间元素作为根节点。
private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
int redLevel,
Iterator it,
java.io.ObjectInputStream str,
V defaultVal)
throws java.io.IOException, ClassNotFoundException {
if (hi < lo) return null;
// 获取中间元素
int mid = (lo + hi) / 2;
Entry<K,V> left = null;
// 若lo小于mid,则递归调用获取(middel的)左孩子。
if (lo < mid)
left = buildFromSorted(level+1, lo, mid - 1, redLevel,
it, str, defaultVal);
// 获取middle节点对应的key和value
K key;
V value;
if (it != null) {
if (defaultVal==null) {
Map.Entry<K,V> entry = (Map.Entry<K,V>)it.next();
key = entry.getKey();
value = entry.getValue();
} else {
key = (K)it.next();
value = defaultVal;
}
} else {
// use stream
key = (K) str.readObject();
value = (defaultVal != null ? defaultVal : (V) str.readObject());
}
// 创建middle节点
Entry<K,V> middle = new Entry<K,V>(key, value, null);
// 若当前节点的深度=红色节点的深度,则将节点着色为红色。
if (level == redLevel)
middle.color = RED;
// 设置middle为left的父亲,left为middle的左孩子
if (left != null) {
middle.left = left;
left.parent = middle;
}
if (mid < hi) {
// 递归调用获取(middel的)右孩子。
Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
it, str, defaultVal);
// 设置middle为left的父亲,left为middle的左孩子
middle.right = right;
right.parent = middle;
}
return middle;
}
要理解buildFromSorted,重点说明以下几点:
第一,buildFromSorted是通过递归将SortedMap中的元素逐个关联。
第二,buildFromSorted返回middle节点(中间节点)作为root。
第三,buildFromSorted**添加到红黑树中时,只将level == redLevel的节点设为红色。**第level级节点,实际上是buildFromSorted转换成红黑树后的最底端(假设根节点在最上方)的节点;只将红黑树最底端的阶段着色为红色,其余都是黑色。
TreeMap的 firstEntry()、 lastEntry()、 lowerEntry()、 higherEntry()、 floorEntry()、 ceilingEntry()、 pollFirstEntry() 、 pollLastEntry() 原理都是类似的;下面以firstEntry()来进行详细说明
我们先看看firstEntry()和getFirstEntry()的代码:
public Map.Entry<K,V> firstEntry() {
return exportEntry(getFirstEntry());
}
final Entry<K,V> getFirstEntry() {
Entry<K,V> p = root;
if (p != null)
while (p.left != null)
p = p.left;
return p;
}
从中,我们可以看出 firstEntry() 和 getFirstEntry() 都是用于获取第一个节点。
但是,firstEntry() 是对外接口; getFirstEntry() 是内部接口。而且,firstEntry() 是通过 getFirstEntry() 来实现的。那为什么外界不能直接调用 getFirstEntry(),而需要多此一举的调用 firstEntry() 呢?
先告诉大家原因,再进行详细说明。这么做的目的是:**防止用户修改返回的Entry。**getFirstEntry()返回的Entry是可以被修改的,但是经过firstEntry()返回的Entry不能被修改,只可以读取Entry的key值和value值。下面我们看看到底是如何实现的。
// 返回“红黑树的第一个节点”
final Entry<K,V> getFirstEntry() {
Entry<K,V> p = root;
if (p != null)
while (p.left != null)
p = p.left;
return p;
}
从中,我们可以调用Entry的getKey()、getValue()来获取key和value值,以及调用setValue()来修改value的值。
static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
return e == null? null :
new AbstractMap.SimpleImmutableEntry<K,V>(e);
}
实际上,exportEntry() 是新建一个AbstractMap.SimpleImmutableEntry类型的对象,并返回。
SimpleImmutableEntry的实现在AbstractMap.java中,下面我们看看AbstractMap.SimpleImmutableEntry是如何实现的,代码如下:
public static class SimpleImmutableEntry<K,V>
implements Entry<K,V>, java.io.Serializable
{
private static final long serialVersionUID = 7138329143949025153L;
private final K key;
private final V value;
public SimpleImmutableEntry(K key, V value) {
this.key = key;
this.value = value;
}
public SimpleImmutableEntry(Entry<? extends K, ? extends V> entry) {
this.key = entry.getKey();
this.value = entry.getValue();
}
public K getKey() {
return key;
}
public V getValue() {
return value;
}
public V setValue(V value) {
throw new UnsupportedOperationException();
}
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
return eq(key, e.getKey()) && eq(value, e.getValue());
}
public int hashCode() {
return (key == null ? 0 : key.hashCode()) ^
(value == null ? 0 : value.hashCode());
}
public String toString() {
return key + "=" + value;
}
}
从中,我们可以看出SimpleImmutableEntry实际上是简化的key-value节点。
它只提供了getKey()、getValue()方法类获取节点的值;但不能修改value的值,因为调用 setValue() 会抛出异常UnsupportedOperationException();
再回到我们之前的问题:那为什么外界不能直接调用 getFirstEntry(),而需要多此一举的调用 firstEntry() 呢?
现在我们清晰的了解到:
TreeMap的**firstKey()、lastKey()、lowerKey()、higherKey()、floorKey()、ceilingKey()**原理都是类似的;下面以ceilingKey()来进行详细说明
ceilingKey(K key)的作用是“返回大于/等于key的最小的键值对所对应的KEY,没有的话返回null”,它的代码如下:
public K ceilingKey(K key) {
return keyOrNull(getCeilingEntry(key));
}
ceilingKey()是通过getCeilingEntry()实现的。keyOrNull()的代码很简单,它是获取节点的key,没有的话,返回null。
static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {
return e == null? null : e.key;
}
getCeilingEntry(K key)的作用是“获取TreeMap中大于/等于key的最小的节点,若不存在(即TreeMap中所有节点的键都比key大),就返回null”。它的实现代码如下:
final Entry<K,V> getCeilingEntry(K key) {
Entry<K,V> p = root;
while (p != null) {
int cmp = compare(key, p.key);
// 情况一:若“p的key” > key。
// 若 p 存在左孩子,则设 p=“p的左孩子”;
// 否则,返回p
if (cmp < 0) {
if (p.left != null)
p = p.left;
else
return p;
// 情况二:若“p的key” < key。
} else if (cmp > 0) {
// 若 p 存在右孩子,则设 p=“p的右孩子”
if (p.right != null) {
p = p.right;
} else {
// 若 p 不存在右孩子,则找出 p 的后继节点,并返回
// 注意:这里返回的 “p的后继节点”有2种可能性:第一,null;第二,TreeMap中大于key的最小的节点。
// 理解这一点的核心是,getCeilingEntry是从root开始遍历的。
// 若getCeilingEntry能走到这一步,那么,它之前“已经遍历过的节点的key”都 > key。
// 能理解上面所说的,那么就很容易明白,为什么“p的后继节点”有2种可能性了。
Entry<K,V> parent = p.parent;
Entry<K,V> ch = p;
while (parent != null && ch == parent.right) {
ch = parent;
parent = parent.parent;
}
return parent;
}
// 情况三:若“p的key” = key。
} else
return p;
}
return null;
}
values() 返回**“TreeMap中值的集合”**
values()的实现代码如下:
public Collection<V> values() {
Collection<V> vs = values;
return (vs != null) ? vs : (values = new Values());
}
说明:从中,我们可以发现values()是通过 new Values() 来实现 “返回TreeMap中值的集合”。
那么Values()是如何实现的呢? 没错!由于返回的是值的集合,那么Values()肯定返回一个集合;而Values()正好是集合类Value的构造函数。Values继承于AbstractCollection,它的代码如下:
// “TreeMap的值的集合”对应的类,它集成于AbstractCollection
class Values extends AbstractCollection<V> {
// 返回迭代器
public Iterator<V> iterator() {
return new ValueIterator(getFirstEntry());
}
// 返回个数
public int size() {
return TreeMap.this.size();
}
// "TreeMap的值的集合"中是否包含"对象o"
public boolean contains(Object o) {
return TreeMap.this.containsValue(o);
}
// 删除"TreeMap的值的集合"中的"对象o"
public boolean remove(Object o) {
for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
if (valEquals(e.getValue(), o)) {
deleteEntry(e);
return true;
}
}
return false;
}
// 清空删除"TreeMap的值的集合"
public void clear() {
TreeMap.this.clear();
}
}
说明:从中,我们可以知道Values类就是一个集合。而 AbstractCollection 实现了除 size() 和 iterator() 之外的其它函数,因此只需要在Values类中实现这两个函数即可。
size() 的实现非常简单,Values集合中元素的个数=该TreeMap的元素个数。(TreeMap每一个元素都有一个值嘛!)
iterator() 则返回一个迭代器,用于遍历Values。下面,我们一起可以看看iterator()的实现:
public Iterator<V> iterator() {
return new ValueIterator(getFirstEntry());
}
说明: iterator() 是通过ValueIterator() 返回迭代器的,ValueIterator是一个类。代码如下:
final class ValueIterator extends PrivateEntryIterator<V> {
ValueIterator(Entry<K,V> first) {
super(first);
}
public V next() {
return nextEntry().value;
}
}
说明:ValueIterator的代码很简单,它的主要实现应该在它的父类PrivateEntryIterator中。下面我们一起看看PrivateEntryIterator的代码:
abstract class PrivateEntryIterator<T> implements Iterator<T> {
// 下一节点
Entry<K,V> next;
// 上一次返回的节点
Entry<K,V> lastReturned;
// 修改次数统计数
int expectedModCount;
PrivateEntryIterator(Entry<K,V> first) {
expectedModCount = modCount;
lastReturned = null;
next = first;
}
// 是否存在下一个节点
public final boolean hasNext() {
return next != null;
}
// 返回下一个节点
final Entry<K,V> nextEntry() {
Entry<K,V> e = next;
if (e == null)
throw new NoSuchElementException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
next = successor(e);
lastReturned = e;
return e;
}
// 返回上一节点
final Entry<K,V> prevEntry() {
Entry<K,V> e = next;
if (e == null)
throw new NoSuchElementException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
next = predecessor(e);
lastReturned = e;
return e;
}
// 删除当前节点
public void remove() {
if (lastReturned == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
// deleted entries are replaced by their successors
if (lastReturned.left != null && lastReturned.right != null)
next = lastReturned;
deleteEntry(lastReturned);
expectedModCount = modCount;
lastReturned = null;
}
}
PrivateEntryIterator是一个抽象类,它的实现很简单,只只实现了Iterator的remove()和hasNext()接口,没有实现next()接口。
而我们在ValueIterator中已经实现的next()接口。
entrySet() 返回**“键值对集合”**。顾名思义,它返回的是一个集合,集合的元素是“键值对”。
下面,我们看看它是如何实现的?entrySet() 的实现代码如下:
public Set<Map.Entry<K,V>> entrySet() {
EntrySet es = entrySet;
return (es != null) ? es : (entrySet = new EntrySet());
}
说明:entrySet()返回的是一个EntrySet对象。
// EntrySet是“TreeMap的所有键值对组成的集合”,
// EntrySet集合的单位是单个“键值对”。
class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator<Map.Entry<K,V>> iterator() {
return new EntryIterator(getFirstEntry());
}
// EntrySet中是否包含“键值对Object”
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
V value = entry.getValue();
Entry<K,V> p = getEntry(entry.getKey());
return p != null && valEquals(p.getValue(), value);
}
// 删除EntrySet中的“键值对Object”
public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
V value = entry.getValue();
Entry<K,V> p = getEntry(entry.getKey());
if (p != null && valEquals(p.getValue(), value)) {
deleteEntry(p);
return true;
}
return false;
}
// 返回EntrySet中元素个数
public int size() {
return TreeMap.this.size();
}
// 清空EntrySet
public void clear() {
TreeMap.this.clear();
}
}
说明:
EntrySet是“TreeMap的所有键值对组成的集合”,而且它单位是单个“键值对”。
EntrySet是一个集合,它继承于AbstractSet。而AbstractSet实现了除size() 和 iterator() 之外的其它函数,因此,我们重点了解一下EntrySet的size() 和 iterator() 函数
size() 的实现非常简单,AbstractSet集合中元素的个数=该TreeMap的元素个数。
iterator() 则返回一个迭代器,用于遍历AbstractSet。从上面的源码中,我们可以发现iterator() 是通过EntryIterator实现的;下面我们看看EntryIterator的源码:
final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
EntryIterator(Entry<K,V> first) {
super(first);
}
public Map.Entry<K,V> next() {
return nextEntry();
}
}
说明:和Values类一样,EntryIterator也继承于PrivateEntryIterator类。
TreeMap实现了Cloneable接口,即实现了clone()方法。
clone()方法的作用很简单,就是克隆一个TreeMap对象并返回。
// 克隆一个TreeMap,并返回Object对象
public Object clone() {
TreeMap<K,V> clone = null;
try {
clone = (TreeMap<K,V>) super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
// Put clone into "virgin" state (except for comparator)
clone.root = null;
clone.size = 0;
clone.modCount = 0;
clone.entrySet = null;
clone.navigableKeySet = null;
clone.descendingMap = null;
// Initialize clone with our mappings
try {
clone.buildFromSorted(size, entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
return clone;
}
TreeMap实现java.io.Serializable,分别实现了串行读取、写入功能。
串行写入函数是writeObject(),它的作用是将TreeMap的“容量,所有的Entry”都写入到输出流中。
而串行读取函数是readObject(),它的作用是将TreeMap的“容量、所有的Entry”依次读出。
readObject() 和 writeObject() 正好是一对,通过它们,我能实现TreeMap的串行传输。
// java.io.Serializable的写入函数
// 将TreeMap的“容量,所有的Entry”都写入到输出流中
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out the Comparator and any hidden stuff
s.defaultWriteObject();
// Write out size (number of Mappings)
s.writeInt(size);
// Write out keys and values (alternating)
for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
Map.Entry<K,V> e = i.next();
s.writeObject(e.getKey());
s.writeObject(e.getValue());
}
}
// java.io.Serializable的读取函数:根据写入方式读出
// 先将TreeMap的“容量、所有的Entry”依次读出
private void readObject(final java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in the Comparator and any hidden stuff
s.defaultReadObject();
// Read in size
int size = s.readInt();
buildFromSorted(size, null, s, null);
}
说到这里,就顺便说一下**“关键字transient”的作用**
transient是Java语言的关键字,它被用来表示一个域不是该对象串行化的一部分。
Java的serialization提供了一种持久化对象实例的机制。当持久化对象时,可能有一个特殊的对象数据成员,我们不想用serialization机制来保存它。为了在一个特定对象的一个域上关闭serialization,可以在这个域前加上关键字transient。
当一个对象被串行化的时候,transient型变量的值不包括在串行化的表示中,然而非transient型的变量是被包括进去的。
我们已经知道TreeMap是一颗红黑树,而红黑树是有序的。
TreeMap的排序方式是通过比较器,在创建TreeMap的时候,若指定了比较器,则使用该比较器;否则,就使用Java的默认比较器。
而获取TreeMap的反向TreeMap的原理就是将比较器反向即可!
理解了descendingMap()的反向原理之后,再讲解一下descendingMap()的代码。
// 获取TreeMap的降序Map
public NavigableMap<K, V> descendingMap() {
NavigableMap<K, V> km = descendingMap;
return (km != null) ? km :
(descendingMap = new DescendingSubMap(this,
true, null, true,
true, null, true));
}
descendingMap()实际上是返回DescendingSubMap类的对象,DescendingSubMap是降序的SubMap,它的实现机制是将“SubMap的比较器反转”。
它继承于NavigableSubMap。而NavigableSubMap是一个继承于AbstractMap的抽象类;它包括2个子类——"(升序)AscendingSubMap"和"(降序)DescendingSubMap"。NavigableSubMap为它的两个子类实现了许多公共API。
读完NavigableSubMap的源码后,我们可以得出它的核心思想是:它是一个抽象集合类,为2个子类——"(升序)AscendingSubMap"和"(降序)DescendingSubMap"而服务;因为NavigableSubMap实现了许多公共API。它的最终目的是实现下面的一系列函数:
headMap(K toKey, boolean inclusive)
headMap(K toKey)
subMap(K fromKey, K toKey)
subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive)
tailMap(K fromKey)
tailMap(K fromKey, boolean inclusive)
navigableKeySet()
descendingKeySet()
顺序遍历和逆序遍历
TreeMap的顺序遍历和逆序遍历原理非常简单。
由于TreeMap中的元素是**从小到大的顺序排列的。**因此,顺序遍历,就是从第一个元素开始,逐个向后遍历;而倒序遍历则恰恰相反,它是从最后一个元素开始,逐个往前遍历。
我们可以通过 keyIterator() 和 descendingKeyIterator()来说明!
keyIterator()的作用是返回顺序的KEY的集合,
descendingKeyIterator()的作用是返回逆序的KEY的集合。
keyIterator() 的代码如下:
Iterator<K> keyIterator() {
return new KeyIterator(getFirstEntry());
}
说明:从中我们可以看出keyIterator() 是返回以“第一个节点(getFirstEntry)” 为其实元素的迭代器。
KeyIterator的代码如下:
final class KeyIterator extends PrivateEntryIterator<K> {
KeyIterator(Entry<K,V> first) {
super(first);
}
public K next() {
return nextEntry().key;
}
}
说明:KeyIterator继承于PrivateEntryIterator。当我们通过next()不断获取下一个元素的时候,就是执行的顺序遍历了。
descendingKeyIterator()的代码如下:
Iterator<K> descendingKeyIterator() {
return new DescendingKeyIterator(getLastEntry());
}
说明:从中我们可以看出descendingKeyIterator() 是返回以“最后一个节点(getLastEntry)” 为其实元素的迭代器。
再看看DescendingKeyIterator的代码:
final class DescendingKeyIterator extends PrivateEntryIterator<K> {
DescendingKeyIterator(Entry<K,V> first) {
super(first);
}
public K next() {
return prevEntry().key;
}
}
说明:DescendingKeyIterator继承于PrivateEntryIterator。当我们通过next()不断获取下一个元素的时候,实际上调用的是prevEntry()获取的上一个节点,这样它实际上执行的是逆序遍历了。
遍历TreeMap的键值对
第一步:根据entrySet()获取TreeMap的“键值对”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设map是TreeMap对象
// map中的key是String类型,value是Integer类型
Integer integ = null;
Iterator iter = map.entrySet().iterator();
while(iter.hasNext()) {
Map.Entry entry = (Map.Entry)iter.next();
// 获取key
key = (String)entry.getKey();
// 获取value
integ = (Integer)entry.getValue();
}
遍历TreeMap的键
第一步:根据keySet()获取TreeMap的“键”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设map是TreeMap对象
// map中的key是String类型,value是Integer类型
String key = null;
Integer integ = null;
Iterator iter = map.keySet().iterator();
while (iter.hasNext()) {
// 获取key
key = (String)iter.next();
// 根据key,获取value
integ = (Integer)map.get(key);
}
遍历TreeMap的值
第一步:根据value()获取TreeMap的“值”的集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设map是TreeMap对象
// map中的key是String类型,value是Integer类型
Integer value = null;
Collection c = map.values();
Iterator iter= c.iterator();
while (iter.hasNext()) {
value = (Integer)iter.next();
}
WeakHashMap 继承于AbstractMap,实现了Map接口。和HashMap一样,WeakHashMap 也是一个散列表,它存储的内容也是键值对(key-value)映射,而且键和值都可以是null。不过WeakHashMap的键是“弱键”。在 WeakHashMap 中,当某个键不再正常使用时,会被从WeakHashMap中被自动移除。更精确地说,对于一个给定的键,其映射的存在并不阻止垃圾回收器对该键的丢弃,这就使该键成为可终止的,被终止,然后被回收。某个键被终止时,它对应的键值对也就从映射中有效地移除了。
这个“弱键”的原理呢?大致上就是,通过WeakReference和ReferenceQueue实现的。WeakHashMap的key是“弱键”,即是WeakReference类型的;ReferenceQueue是一个队列,它会保存被GC回收的“弱键”。实现步骤是:
和HashMap一样,WeakHashMap是不同步的。可以使用 Collections.synchronizedMap 方法来构造同步的 WeakHashMap。
WeakHashMap共有4个构造函数,如下:
// 默认构造函数。
WeakHashMap()
// 指定“容量大小”的构造函数
WeakHashMap(int capacity)
// 指定“容量大小”和“加载因子”的构造函数
WeakHashMap(int capacity, float loadFactor)
// 包含“子Map”的构造函数
WeakHashMap(Map<? extends K, ? extends V> map)
void clear()
Object clone()
boolean containsKey(Object key)
boolean containsValue(Object value)
Set<Entry<K, V>> entrySet()
V get(Object key)
boolean isEmpty()
Set<K> keySet()
V put(K key, V value)
void putAll(Map<? extends K, ? extends V> map)
V remove(Object key)
int size()
Collection<V> values()
WeakHashMap的继承关系如下
java.lang.Object
↳ java.util.AbstractMap<K, V>
↳ java.util.WeakHashMap<K, V>
public class WeakHashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V> {
}
WeakHashMap与Map关系如下图:
从图中可以看出:
WeakHashMap继承于AbstractMap,并且实现了Map接口。
WeakHashMap是哈希表,但是它的键是"弱键"。WeakHashMap中保护几个重要的成员变量:table, size, threshold, loadFactor, modCount, queue。
package java.util;
import java.lang.ref.WeakReference;
import java.lang.ref.ReferenceQueue;
public class WeakHashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V> {
// 默认的初始容量是16,必须是2的幂。
private static final int DEFAULT_INITIAL_CAPACITY = 16;
// 最大容量(必须是2的幂且小于2的30次方,传入容量过大将被这个值替换)
private static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认加载因子
private static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 存储数据的Entry数组,长度是2的幂。
// WeakHashMap是采用拉链法实现的,每一个Entry本质上是一个单向链表
private Entry[] table;
// WeakHashMap的大小,它是WeakHashMap保存的键值对的数量
private int size;
// WeakHashMap的阈值,用于判断是否需要调整WeakHashMap的容量(threshold = 容量*加载因子)
private int threshold;
// 加载因子实际大小
private final float loadFactor;
// queue保存的是“已被GC清除”的“弱引用的键”。
// 弱引用和ReferenceQueue 是联合使用的:如果弱引用所引用的对象被垃圾回收,Java虚拟机就会把这个弱引用加入到与之关联的引用队列中
private final ReferenceQueue<K> queue = new ReferenceQueue<K>();
// WeakHashMap被改变的次数
private volatile int modCount;
// 指定“容量大小”和“加载因子”的构造函数
public WeakHashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Initial Capacity: "+
initialCapacity);
// WeakHashMap的最大容量只能是MAXIMUM_CAPACITY
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load factor: "+
loadFactor);
// 找出“大于initialCapacity”的最小的2的幂
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
// 创建Entry数组,用来保存数据
table = new Entry[capacity];
// 设置“加载因子”
this.loadFactor = loadFactor;
// 设置“WeakHashMap阈值”,当WeakHashMap中存储数据的数量达到threshold时,就需要将WeakHashMap的容量加倍。
threshold = (int)(capacity * loadFactor);
}
// 指定“容量大小”的构造函数
public WeakHashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
// 默认构造函数。
public WeakHashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold = (int)(DEFAULT_INITIAL_CAPACITY);
table = new Entry[DEFAULT_INITIAL_CAPACITY];
}
// 包含“子Map”的构造函数
public WeakHashMap(Map<? extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, 16),
DEFAULT_LOAD_FACTOR);
// 将m中的全部元素逐个添加到WeakHashMap中
putAll(m);
}
// 键为null的mask值。
// 因为WeakReference中允许“null的key”,若直接插入“null的key”,将其当作弱引用时,会被删除。
// 因此,这里对于“key为null”的清空,都统一替换为“key为NULL_KEY”,“NULL_KEY”是“静态的final常量”。
private static final Object NULL_KEY = new Object();
// 对“null的key”进行特殊处理
private static Object maskNull(Object key) {
return (key == null ? NULL_KEY : key);
}
// 还原对“null的key”的特殊处理
private static <K> K unmaskNull(Object key) {
return (K) (key == NULL_KEY ? null : key);
}
// 判断“x”和“y”是否相等
static boolean eq(Object x, Object y) {
return x == y || x.equals(y);
}
// 返回索引值
// h & (length-1)保证返回值的小于length
static int indexFor(int h, int length) {
return h & (length-1);
}
// 清空table中无用键值对。原理如下:
// (01) 当WeakHashMap中某个“弱引用的key”由于没有再被引用而被GC收回时,
// 被回收的“该弱引用key”也被会被添加到"ReferenceQueue(queue)"中。
// (02) 当我们执行expungeStaleEntries时,
// 就遍历"ReferenceQueue(queue)"中的所有key
// 然后就在“WeakReference的table”中删除与“ReferenceQueue(queue)中key”对应的键值对
private void expungeStaleEntries() {
Entry<K,V> e;
while ( (e = (Entry<K,V>) queue.poll()) != null) {
int h = e.hash;
int i = indexFor(h, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> p = prev;
while (p != null) {
Entry<K,V> next = p.next;
if (p == e) {
if (prev == e)
table[i] = next;
else
prev.next = next;
e.next = null; // Help GC
e.value = null; // " "
size--;
break;
}
prev = p;
p = next;
}
}
}
// 获取WeakHashMap的table(存放键值对的数组)
private Entry[] getTable() {
// 删除table中“已被GC回收的key对应的键值对”
expungeStaleEntries();
return table;
}
// 获取WeakHashMap的实际大小
public int size() {
if (size == 0)
return 0;
// 删除table中“已被GC回收的key对应的键值对”
expungeStaleEntries();
return size;
}
public boolean isEmpty() {
return size() == 0;
}
// 获取key对应的value
public V get(Object key) {
Object k = maskNull(key);
// 获取key的hash值。
int h = HashMap.hash(k.hashCode());
Entry[] tab = getTable();
int index = indexFor(h, tab.length);
Entry<K,V> e = tab[index];
// 在“该hash值对应的链表”上查找“键值等于key”的元素
while (e != null) {
if (e.hash == h && eq(k, e.get()))
return e.value;
e = e.next;
}
return null;
}
// WeakHashMap是否包含key
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
// 返回“键为key”的键值对
Entry<K,V> getEntry(Object key) {
Object k = maskNull(key);
int h = HashMap.hash(k.hashCode());
Entry[] tab = getTable();
int index = indexFor(h, tab.length);
Entry<K,V> e = tab[index];
while (e != null && !(e.hash == h && eq(k, e.get())))
e = e.next;
return e;
}
// 将“key-value”添加到WeakHashMap中
public V put(K key, V value) {
K k = (K) maskNull(key);
int h = HashMap.hash(k.hashCode());
Entry[] tab = getTable();
int i = indexFor(h, tab.length);
for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
// 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出!
if (h == e.hash && eq(k, e.get())) {
V oldValue = e.value;
if (value != oldValue)
e.value = value;
return oldValue;
}
}
// 若“该key”对应的键值对不存在于WeakHashMap中,则将“key-value”添加到table中
modCount++;
Entry<K,V> e = tab[i];
tab[i] = new Entry<K,V>(k, value, queue, h, e);
if (++size >= threshold)
resize(tab.length * 2);
return null;
}
// 重新调整WeakHashMap的大小,newCapacity是调整后的单位
void resize(int newCapacity) {
Entry[] oldTable = getTable();
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
// 新建一个newTable,将“旧的table”的全部元素添加到“新的newTable”中,
// 然后,将“新的newTable”赋值给“旧的table”。
Entry[] newTable = new Entry[newCapacity];
transfer(oldTable, newTable);
table = newTable;
if (size >= threshold / 2) {
threshold = (int)(newCapacity * loadFactor);
} else {
// 删除table中“已被GC回收的key对应的键值对”
expungeStaleEntries();
transfer(newTable, oldTable);
table = oldTable;
}
}
// 将WeakHashMap中的全部元素都添加到newTable中
private void transfer(Entry[] src, Entry[] dest) {
for (int j = 0; j < src.length; ++j) {
Entry<K,V> e = src[j];
src[j] = null;
while (e != null) {
Entry<K,V> next = e.next;
Object key = e.get();
if (key == null) {
e.next = null; // Help GC
e.value = null; // " "
size--;
} else {
int i = indexFor(e.hash, dest.length);
e.next = dest[i];
dest[i] = e;
}
e = next;
}
}
}
// 将"m"的全部元素都添加到WeakHashMap中
public void putAll(Map<? extends K, ? extends V> m) {
int numKeysToBeAdded = m.size();
if (numKeysToBeAdded == 0)
return;
// 计算容量是否足够,
// 若“当前实际容量 < 需要的容量”,则将容量x2。
if (numKeysToBeAdded > threshold) {
int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
if (targetCapacity > MAXIMUM_CAPACITY)
targetCapacity = MAXIMUM_CAPACITY;
int newCapacity = table.length;
while (newCapacity < targetCapacity)
newCapacity <<= 1;
if (newCapacity > table.length)
resize(newCapacity);
}
// 将“m”中的元素逐个添加到WeakHashMap中。
for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
put(e.getKey(), e.getValue());
}
// 删除“键为key”元素
public V remove(Object key) {
Object k = maskNull(key);
// 获取哈希值。
int h = HashMap.hash(k.hashCode());
Entry[] tab = getTable();
int i = indexFor(h, tab.length);
Entry<K,V> prev = tab[i];
Entry<K,V> e = prev;
// 删除链表中“键为key”的元素
// 本质是“删除单向链表中的节点”
while (e != null) {
Entry<K,V> next = e.next;
if (h == e.hash && eq(k, e.get())) {
modCount++;
size--;
if (prev == e)
tab[i] = next;
else
prev.next = next;
return e.value;
}
prev = e;
e = next;
}
return null;
}
// 删除“键值对”
Entry<K,V> removeMapping(Object o) {
if (!(o instanceof Map.Entry))
return null;
Entry[] tab = getTable();
Map.Entry entry = (Map.Entry)o;
Object k = maskNull(entry.getKey());
int h = HashMap.hash(k.hashCode());
int i = indexFor(h, tab.length);
Entry<K,V> prev = tab[i];
Entry<K,V> e = prev;
// 删除链表中的“键值对e”
// 本质是“删除单向链表中的节点”
while (e != null) {
Entry<K,V> next = e.next;
if (h == e.hash && e.equals(entry)) {
modCount++;
size--;
if (prev == e)
tab[i] = next;
else
prev.next = next;
return e;
}
prev = e;
e = next;
}
return null;
}
// 清空WeakHashMap,将所有的元素设为null
public void clear() {
while (queue.poll() != null)
;
modCount++;
Entry[] tab = table;
for (int i = 0; i < tab.length; ++i)
tab[i] = null;
size = 0;
while (queue.poll() != null)
;
}
// 是否包含“值为value”的元素
public boolean containsValue(Object value) {
// 若“value为null”,则调用containsNullValue()查找
if (value==null)
return containsNullValue();
// 若“value不为null”,则查找WeakHashMap中是否有值为value的节点。
Entry[] tab = getTable();
for (int i = tab.length ; i-- > 0 ;)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (value.equals(e.value))
return true;
return false;
}
// 是否包含null值
private boolean containsNullValue() {
Entry[] tab = getTable();
for (int i = tab.length ; i-- > 0 ;)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (e.value==null)
return true;
return false;
}
// Entry是单向链表。
// 它是 “WeakHashMap链式存储法”对应的链表。
// 它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数
private static class Entry<K,V> extends WeakReference<K> implements Map.Entry<K,V> {
private V value;
private final int hash;
// 指向下一个节点
private Entry<K,V> next;
// 构造函数。
Entry(K key, V value,
ReferenceQueue<K> queue,
int hash, Entry<K,V> next) {
super(key, queue);
this.value = value;
this.hash = hash;
this.next = next;
}
public K getKey() {
return WeakHashMap.<K>unmaskNull(get());
}
public V getValue() {
return value;
}
public V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
// 判断两个Entry是否相等
// 若两个Entry的“key”和“value”都相等,则返回true。
// 否则,返回false
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}
// 实现hashCode()
public int hashCode() {
Object k = getKey();
Object v = getValue();
return ((k==null ? 0 : k.hashCode()) ^
(v==null ? 0 : v.hashCode()));
}
public String toString() {
return getKey() + "=" + getValue();
}
}
// HashIterator是WeakHashMap迭代器的抽象出来的父类,实现了公共了函数。
// 它包含“key迭代器(KeyIterator)”、“Value迭代器(ValueIterator)”和“Entry迭代器(EntryIterator)”3个子类。
private abstract class HashIterator<T> implements Iterator<T> {
// 当前索引
int index;
// 当前元素
Entry<K,V> entry = null;
// 上一次返回元素
Entry<K,V> lastReturned = null;
// expectedModCount用于实现fast-fail机制。
int expectedModCount = modCount;
// 下一个键(强引用)
Object nextKey = null;
// 当前键(强引用)
Object currentKey = null;
// 构造函数
HashIterator() {
index = (size() != 0 ? table.length : 0);
}
// 是否存在下一个元素
public boolean hasNext() {
Entry[] t = table;
// 一个Entry就是一个单向链表
// 若该Entry的下一个节点不为空,就将next指向下一个节点;
// 否则,将next指向下一个链表(也是下一个Entry)的不为null的节点。
while (nextKey == null) {
Entry<K,V> e = entry;
int i = index;
while (e == null && i > 0)
e = t[--i];
entry = e;
index = i;
if (e == null) {
currentKey = null;
return false;
}
nextKey = e.get(); // hold on to key in strong ref
if (nextKey == null)
entry = entry.next;
}
return true;
}
// 获取下一个元素
protected Entry<K,V> nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (nextKey == null && !hasNext())
throw new NoSuchElementException();
lastReturned = entry;
entry = entry.next;
currentKey = nextKey;
nextKey = null;
return lastReturned;
}
// 删除当前元素
public void remove() {
if (lastReturned == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
WeakHashMap.this.remove(currentKey);
expectedModCount = modCount;
lastReturned = null;
currentKey = null;
}
}
// value的迭代器
private class ValueIterator extends HashIterator<V> {
public V next() {
return nextEntry().value;
}
}
// key的迭代器
private class KeyIterator extends HashIterator<K> {
public K next() {
return nextEntry().getKey();
}
}
// Entry的迭代器
private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
public Map.Entry<K,V> next() {
return nextEntry();
}
}
// WeakHashMap的Entry对应的集合
private transient Set<Map.Entry<K,V>> entrySet = null;
// 返回“key的集合”,实际上返回一个“KeySet对象”
public Set<K> keySet() {
Set<K> ks = keySet;
return (ks != null ? ks : (keySet = new KeySet()));
}
// Key对应的集合
// KeySet继承于AbstractSet,说明该集合中没有重复的Key。
private class KeySet extends AbstractSet<K> {
public Iterator<K> iterator() {
return new KeyIterator();
}
public int size() {
return WeakHashMap.this.size();
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
if (containsKey(o)) {
WeakHashMap.this.remove(o);
return true;
}
else
return false;
}
public void clear() {
WeakHashMap.this.clear();
}
}
// 返回“value集合”,实际上返回的是一个Values对象
public Collection<V> values() {
Collection<V> vs = values;
return (vs != null ? vs : (values = new Values()));
}
// “value集合”
// Values继承于AbstractCollection,不同于“KeySet继承于AbstractSet”,
// Values中的元素能够重复。因为不同的key可以指向相同的value。
private class Values extends AbstractCollection<V> {
public Iterator<V> iterator() {
return new ValueIterator();
}
public int size() {
return WeakHashMap.this.size();
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
WeakHashMap.this.clear();
}
}
// 返回“WeakHashMap的Entry集合”
// 它实际是返回一个EntrySet对象
public Set<Map.Entry<K,V>> entrySet() {
Set<Map.Entry<K,V>> es = entrySet;
return es != null ? es : (entrySet = new EntrySet());
}
// EntrySet对应的集合
// EntrySet继承于AbstractSet,说明该集合中没有重复的EntrySet。
private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator<Map.Entry<K,V>> iterator() {
return new EntryIterator();
}
// 是否包含“值(o)”
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k = e.getKey();
Entry candidate = getEntry(e.getKey());
return candidate != null && candidate.equals(e);
}
// 删除“值(o)”
public boolean remove(Object o) {
return removeMapping(o) != null;
}
// 返回WeakHashMap的大小
public int size() {
return WeakHashMap.this.size();
}
// 清空WeakHashMap
public void clear() {
WeakHashMap.this.clear();
}
// 拷贝函数。将WeakHashMap中的全部元素都拷贝到List中
private List<Map.Entry<K,V>> deepCopy() {
List<Map.Entry<K,V>> list = new ArrayList<Map.Entry<K,V>>(size());
for (Map.Entry<K,V> e : this)
list.add(new AbstractMap.SimpleEntry<K,V>(e));
return list;
}
// 返回Entry对应的Object[]数组
public Object[] toArray() {
return deepCopy().toArray();
}
// 返回Entry对应的T[]数组(T[]我们新建数组时,定义的数组类型)
public <T> T[] toArray(T[] a) {
return deepCopy().toArray(a);
}
}
}
说明:WeakHashMap和HashMap都是通过"拉链法"实现的散列表。它们的源码绝大部分内容都一样,这里就只是对它们不同的部分就是说明。
遍历WeakHashMap的键值对
第一步:根据entrySet()获取WeakHashMap的“键值对”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设map是WeakHashMap对象
// map中的key是String类型,value是Integer类型
Integer integ = null;
Iterator iter = map.entrySet().iterator();
while(iter.hasNext()) {
Map.Entry entry = (Map.Entry)iter.next();
// 获取key
key = (String)entry.getKey();
// 获取value
integ = (Integer)entry.getValue();
}
遍历WeakHashMap的键
第一步:根据keySet()获取WeakHashMap的“键”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设map是WeakHashMap对象
// map中的key是String类型,value是Integer类型
String key = null;
Integer integ = null;
Iterator iter = map.keySet().iterator();
while (iter.hasNext()) {
// 获取key
key = (String)iter.next();
// 根据key,获取value
integ = (Integer)map.get(key);
}
遍历WeakHashMap的值
第一步:根据value()获取WeakHashMap的“值”的集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设map是WeakHashMap对象
// map中的key是String类型,value是Integer类型
Integer value = null;
Collection c = map.values();
Iterator iter= c.iterator();
while (iter.hasNext()) {
value = (Integer)iter.next(