Tensorflow笔记——第四讲:网络八股扩展

目录

  • 4.1 搭建神经网络八股
  • 4.2 自制数据集
  • 4.3 数据增强(增大数据量)
  • 4.4 断点续训,存取模型
      • 4.4.1 读取模型:
      • 4.4.2 保存模型:
  • 4.5 参数提取,写至文本
  • 4.6 acc/loss可视化,查看效果
  • 4.7 给图识物

4.1 搭建神经网络八股

Tensorflow笔记——第四讲:网络八股扩展_第1张图片

4.2 自制数据集

观察数据集数据结构,配成特征标签对:

mnist_image_label文件夹:
Tensorflow笔记——第四讲:网络八股扩展_第2张图片
四个文件分别对应为训练集图片、训练集标签、测试集图片、测试集标签。

图片文件夹:
Tensorflow笔记——第四讲:网络八股扩展_第3张图片
标签文件:
Tensorflow笔记——第四讲:网络八股扩展_第4张图片
具体代码如下:

import tensorflow as tf
from PIL import Image
import numpy as np
import os

train_path = './mnist_image_label/mnist_train_jpg_60000/'
train_txt = './mnist_image_label/mnist_train_jpg_60000.txt'
x_train_savepath = './mnist_image_label/mnist_x_train.npy'
y_train_savepath = './mnist_image_label/mnist_y_train.npy'

test_path = './mnist_image_label/mnist_test_jpg_10000/'
test_txt = './mnist_image_label/mnist_test_jpg_10000.txt'
x_test_savepath = './mnist_image_label/mnist_x_test.npy'
y_test_savepath = './mnist_image_label/mnist_y_test.npy'


def generateds(path, txt):
    f = open(txt, 'r')  # 以只读形式打开txt文件
    contents = f.readlines()  # 读取文件中所有行
    f.close()  # 关闭txt文件
    x, y_ = [], []  # 建立空列表
    for content in contents:  # 逐行取出
        value = content.split()  # 以空格分开,图片路径为value[0] , 标签为value[1] , 存入列表
        img_path = path + value[0]  # 拼出图片路径和文件名
        img = Image.open(img_path)  # 读入图片
        img = np.array(img.convert('L'))  # 图片变为8位宽灰度值的np.array格式
        img = img / 255.  # 数据归一化 (实现预处理)
        x.append(img)  # 归一化后的数据,贴到列表x
        y_.append(value[1])  # 标签贴到列表y_
        print('loading : ' + content)  # 打印状态提示

    x = np.array(x)  # 变为np.array格式
    y_ = np.array(y_)  # 变为np.array格式
    y_ = y_.astype(np.int64)  # 变为64位整型
    return x, y_  # 返回输入特征x,返回标签y_


if os.path.exists(x_train_savepath) and os.path.exists(y_train_savepath) and os.path.exists(
        x_test_savepath) and os.path.exists(y_test_savepath):
    print('-------------Load Datasets-----------------')
    x_train_save = np.load(x_train_savepath)
    y_train = np.load(y_train_savepath)
    x_test_save = np.load(x_test_savepath)
    y_test = np.load(y_test_savepath)
    x_train = np.reshape(x_train_save, (len(x_train_save), 28, 28))
    x_test = np.reshape(x_test_save, (len(x_test_save), 28, 28))
else:
    print('-------------Generate Datasets-----------------')
    x_train, y_train = generateds(train_path, train_txt)
    x_test, y_test = generateds(test_path, test_txt)

    print('-------------Save Datasets-----------------')
    x_train_save = np.reshape(x_train, (len(x_train), -1))
    x_test_save = np.reshape(x_test, (len(x_test), -1))
    np.save(x_train_savepath, x_train_save)   # x_train_savepath为保存的文件名, x_train_save为要保存的数据
    np.save(y_train_savepath, y_train)
    np.save(x_test_savepath, x_test_save)
    np.save(y_test_savepath, y_test)

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()

对上面的代码说明一下,首先这个数据是已经划分好了训练集和测试集,并且给每个图片都已经打好了标签,在此基础上,这个代码所要做的是:将每个训练集的图片读入文件,变成一个28*28的二维矩阵,再将所有的图片放一起,组成一个三维数组,测试集也是一样的。

4.3 数据增强(增大数据量)

使用的方法就是下面这两个:

image_gen_train=tf.keras.preprocessing.image.ImageDataGenerator(增强方法)
image_gen_train.fit(x_train)

常用增强方法:

缩放系数:rescale=所有数据将乘以提供的值
随机旋转:rotation_range=随机旋转角度数范围
宽度偏移:width_shift_range=随机宽度偏移量
高度偏移:height_shift_range=随机高度偏移量
水平翻转:horizontal_flip=是否水平随机翻转
随机缩放:zoom_range=随机缩放的范围 [1-n,1+n]

看个例子:

Tensorflow笔记——第四讲:网络八股扩展_第5张图片

加入了数据增强的手写数字识别代码如下:

import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)  # 给数据增加一个维度,从(60000, 28, 28)reshape为(60000, 28, 28, 1)

# 下面“==”中的代码就是数据增强
# ==================================================================
image_gen_train = ImageDataGenerator(
    rescale=1. / 1.,  # 如为图像,分母为255时,可归至0~1
    rotation_range=45,  # 随机45度旋转
    width_shift_range=.15,  # 宽度偏移
    height_shift_range=.15,  # 高度偏移
    horizontal_flip=False,  # 水平翻转
    zoom_range=0.5  # 将图像随机缩放阈量50%
)
image_gen_train.fit(x_train)
# ===================================================================

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(image_gen_train.flow(x_train, y_train, batch_size=32), epochs=5, validation_data=(x_test, y_test),
          validation_freq=1)
model.summary()

注:

(1)model.fit(x_train,y_train,batch_size=32,……)变为model.fit(image_gen_train.flow(x_train, y_train,batch_size=32), ……);

(2)数据增强函数的输入要求是4维,通过reshape调整;

(3)如果报错:缺少 scipy 库,pip install scipy 即可。

4.4 断点续训,存取模型

4.4.1 读取模型:

使用函数:load_weights(路径文件名)
比如下面这样:

在这里插入图片描述

4.4.2 保存模型:

借助tensorflow给出的回调函数,直接保存参数和网络:
Tensorflow笔记——第四讲:网络八股扩展_第6张图片
注:
monitor配合save_best_only可以保存最优模型,包括:训练损失最小模型、测试损失最小模型、训练准确率最高模型、测试准确率最高模型等。

看一个能完整运行的,手写数字识别的例子:

import tensorflow as tf
import os

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

# “==”中的就是加载模型,保存模型的代码
# ==========================================================================================
# 加载模型
checkpoint_save_path = "./checkpoint/mnist.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)

# 保存模型
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)

history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])

# ===========================================================================================
model.summary()

4.5 参数提取,写至文本

提取可训练参数

使用model.trainable_variables返回模型中可训练的参数。

设置print输出格式

直接print,省略号代替了很多的参数,所以设置一下用来全部显示:

Tensorflow笔记——第四讲:网络八股扩展_第7张图片

完整的代码如下:

import tensorflow as tf
import os
import numpy as np

np.set_printoptions(threshold=np.inf)  # 设置print显示所有

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])
checkpoint_save_path = "./checkpoint/mnist.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)
history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()

# 下面就是打印参数,以及把参数保存到文本文件中的代码:
# ==============================================================
# 打印参数
print(model.trainable_variables)

# 保存参数
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()
# ==============================================================

模型参数打印结果:
Tensorflow笔记——第四讲:网络八股扩展_第8张图片
weights.txt:
Tensorflow笔记——第四讲:网络八股扩展_第9张图片

4.6 acc/loss可视化,查看效果

其实在执行训练的history=model.fit()函数中,是直接保存了这些结果的,我们只需要history.history[]提取出来即可,具体用法如下:

Tensorflow笔记——第四讲:网络八股扩展_第10张图片
完整的代码如下:

import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt

np.set_printoptions(threshold=np.inf)

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

checkpoint_save_path = "./checkpoint/mnist.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)

history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()

print(model.trainable_variables)
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()

###############################################    show   ###############################################

# 显示训练集和验证集的acc和loss曲线
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']

plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

结果:
Tensorflow笔记——第四讲:网络八股扩展_第11张图片

4.7 给图识物

Tensorflow笔记——第四讲:网络八股扩展_第12张图片
具体做法是,使用我们训练好的模型在我们实际手写的数字图片上运行,使用predict(输入数据, batch_size=整数) 返回前向传播计算结果。

Tensorflow笔记——第四讲:网络八股扩展_第13张图片
看完整的代码:

from PIL import Image
import numpy as np
import tensorflow as tf

model_save_path = './checkpoint/mnist.ckpt'   # 前面保存的模型文件

# 这个就是复现模型,我们只需要把下面加载的模型参数送入这个模型中就还原了训练的模型
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')])

model.load_weights(model_save_path)  # 加载模型参数

preNum = int(input("input the number of test pictures:"))  # 输入要识别的图片数量

for i in range(preNum):  # 一张一张加载进来
    image_path = input("the path of test picture:")
    img = Image.open(image_path)
    img = img.resize((28, 28), Image.ANTIALIAS)  # 我们手写的图片不一定是28*28,所以要转变换成28*28的灰度图像
    img_arr = np.array(img.convert('L'))

# 手写的是白底黑字,要转换成黑底白字,这个过程叫数据预处理
    for i in range(28):
        for j in range(28):
            if img_arr[i][j] < 200:
                img_arr[i][j] = 255
            else:
                img_arr[i][j] = 0

    img_arr = img_arr / 255.0   # 归一化
    x_predict = img_arr[tf.newaxis, ...]   # 模型最外层应该是batch_size,所以这里最外层增加一维
    result = model.predict(x_predict)  # 送入模型,得到结果

    pred = tf.argmax(result, axis=1)   # 返回输出的10个结果中最大的一个

    print('\n')
    tf.print(pred)

你可能感兴趣的:(Tensorflow笔记)