keras中的model.fit和model.fit_generator

fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None)

本函数用以训练模型,参数有:

  • x:输入数据。如果模型只有一个输入,那么x的类型是numpy array,如果模型有多个输入,那么x的类型应当为list,list的元素是对应于各个输入的numpy array。如果模型的每个输入都有名字,则可以传入一个字典,将输入名与其输入数据对应起来。

  • y:标签,numpy array。如果模型有多个输出,可以传入一个numpy array的list。如果模型的输出拥有名字,则可以传入一个字典,将输出名与其标签对应起来。

  • batch_size:整数,指定进行梯度下降时每个batch包含的样本数。训练时一个batch的样本会被计算一次梯度下降,使目标函数优化一步。

  • epochs:整数,训练终止时的epoch值,训练将在达到该epoch值时停止,当没有设置initial_epoch时,它就是训练的总轮数,否则训练的总轮数为epochs - inital_epoch

  • verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录

  • callbacks:list,其中的元素是keras.callbacks.Callback的对象。这个list中的回调函数将会在训练过程中的适当时机被调用,参考回调函数

  • validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集将不参与训练,并在每个epoch结束后测试的模型的指标,如损失函数、精确度等。注意,validation_split的划分在shuffle之后,因此如果你的数据本身是有序的,需要先手工打乱再指定validation_split,否则可能会出现验证集样本不均匀。

  • validation_data:形式为(X,y)或(X,y,sample_weights)的tuple,是指定的验证集。此参数将覆盖validation_spilt。

  • shuffle:布尔值,表示是否在训练过程中每个epoch前随机打乱输入样本的顺序。

  • class_weight:字典,将不同的类别映射为不同的权值,该参数用来在训练过程中调整损失函数(只能用于训练)。该参数在处理非平衡的训练数据(某些类的训练样本数很少)时,可以使得损失函数对样本数不足的数据更加关注。

  • sample_weight:权值的numpy array,用于在训练时调整损失函数(仅用于训练)。可以传递一个1D的与样本等长的向量用于对样本进行1对1的加权,或者在面对时序数据时,传递一个的形式为(samples,sequence_length)的矩阵来为每个时间步上的样本赋不同的权。这种情况下请确定在编译模型时添加了sample_weight_mode='temporal'

  • initial_epoch: 从该参数指定的epoch开始训练,在继续之前的训练时有用。

  • steps_per_epoch: 一个epoch包含的步数(每一步是一个batch的数据送入),当使用如TensorFlow数据Tensor之类的输入张量进行训练时,默认的None代表自动分割,即数据集样本数/batch样本数。

  • validation_steps: 仅当steps_per_epoch被指定时有用,在验证集上的step总数。

输入数据与规定数据不匹配时会抛出错误

fit函数返回一个History的对象,其History.history属性记录了损失函数和其他指标的数值随epoch变化的情况,如果有验证集的话,也包含了验证集的这些指标变化情况。

 

 

fit_generator(self, generator, steps_per_epoch, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_q_size=10, workers=1, pickle_safe=False, initial_epoch=0)

 

函数的参数是:

  • generator:生成器函数,生成器的输出应该为:

    • 一个形如(inputs,targets)的tuple

    • 一个形如(inputs, targets,sample_weight)的tuple。所有的返回值都应该包含相同数目的样本。生成器将无限在数据集上循环。每个epoch以经过模型的样本数达到samples_per_epoch时,记一个epoch结束

  • steps_per_epoch:整数,当生成器返回steps_per_epoch次数据时计一个epoch结束,执行下一个epoch

  • epochs:整数,数据迭代的轮数

  • verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录

  • validation_data:具有以下三种形式之一

    • 生成验证集的生成器

    • 一个形如(inputs,targets)的tuple

    • 一个形如(inputs,targets,sample_weights)的tuple

  • validation_steps: 当validation_data为生成器时,本参数指定验证集的生成器返回次数

  • class_weight:规定类别权重的字典,将类别映射为权重,常用于处理样本不均衡问题。

  • sample_weight:权值的numpy array,用于在训练时调整损失函数(仅用于训练)。可以传递一个1D的与样本等长的向量用于对样本进行1对1的加权,或者在面对时序数据时,传递一个的形式为(samples,sequence_length)的矩阵来为每个时间步上的样本赋不同的权。这种情况下请确定在编译模型时添加了sample_weight_mode='temporal'

  • workers:最大进程数

  • max_q_size:生成器队列的最大容量

  • pickle_safe: 若为真,则使用基于进程的线程。由于该实现依赖多进程,不能传递non picklable(无法被pickle序列化)的参数到生成器中,因为无法轻易将它们传入子进程中。

  • initial_epoch: 从该参数指定的epoch开始训练,在继续之前的训练时有用。

函数返回一个History对象。

参考文献: Keras中文文档

 

你可能感兴趣的:(keras)