在服务器上用多GPU做训练时,由于想只用其中的一个GPU设备做训练,可使用深度学习代码运行时往往出现多个GPU显存被占满清理。出现该现象主要是tensorflow训练时默认占用所有GPU的显存。
查看你的源文件中是否有类似如下的代码片段:
with tf.Graph().as_default():
gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction)
sess=tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,log_device_placement=False))
with sess.as_default():
上述代码片段主要是在创建session的时候,对session进行参数配置用的,
tf.ConfigProto()的参数如下:
log_device_placement=True : 是否打印设备分配日志
allow_soft_placement=True : 如果你指定的设备不存在,允许TF自动分配设备
tf.ConfigProto(log_device_placement=True,allow_soft_placement=True)
在构造tf.Session()时可通过tf.GPUOptions作为可选配置参数的一部分来显示地指定需要分配的显存比例。
per_process_gpu_memory_fraction指定了每个GPU进程中使用显存的上限,但它只能均匀地作用于所有GPU,无法对不同GPU设置不同的上限。
示例代码如下:
#allow growth
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config, ...)
# 使用allow_growth option,刚一开始分配少量的GPU容量,然后按需慢慢的增加,由于不会释放
#内存,所以会导致碎片
# per_process_gpu_memory_fraction
gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=0.7)
config=tf.ConfigProto(gpu_options=gpu_options)
session = tf.Session(config=config, ...)
#设置每个GPU应该拿出多少容量给进程使用,0.4代表 40%
方法一:如果你在终端指定GPU个数和ID号,如果电脑有多个GPU,tensorflow默认全部使用。如果想只使用部分GPU,可以设置CUDA_VISIBLE_DEVICES。在调用python程序时,可以使用:
CUDA_VISIBLE_DEVICES=1 python your_script.py #在运行脚本前指定GPU的设备号
#常规设置有:
CUDA_VISIBLE_DEVICES=1 Only device 1 will be seen
CUDA_VISIBLE_DEVICES=0,1 Devices 0 and 1 will be visible
CUDA_VISIBLE_DEVICES="0,1" Same as above, quotation marks are optional
CUDA_VISIBLE_DEVICES=0,2,3 Devices 0, 2, 3 will be visible; device 1 is masked
CUDA_VISIBLE_DEVICES="" No GPU will be visible
#你也可以使用
export CUDA_VISIBLE_DEVICES=2 #指定设备号
方法二:如果你在python原文件中作更改,在在文件开始处添加如下内容:
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2" #指明了GPU ID号
#若多个GPU的话
os.environ["CUDA_VISIBLE_DEVICES"] = "1,2" #指明了两个GPU ID号,注意这里不区分双引号和单引号
实用技巧:
如果你在linux终端运行深度学习python脚本文件,运行中发现占用多个GPU和内存资源,则请先查看占用资源的进程归属方是谁:
$ps -f PID号
然后确认该进程可以kill掉情况下建议:
$kill -9 PID号
ctrl+Z指令只能强制结束当前流程,无法退出进程,所以发现有问题后用ctrl+Z后还需要kill进程。