- pytorch实现单机多卡训练
*Major*
pytorch人工智能python
pytorch实现单机多卡训练fromtorch.nn.parallelimportDataParallel#单机多卡的分布式训练(数据并行)模型训练加速'''三构建模型'''model=build_model(CFG.backbone,CFG.num_classes,CFG.device)model.load_state_dict(torch.load("best_epoch.bin"))mod
- 目标检测-YOLOv4
wydxry
深度学习目标检测YOLO目标跟踪
YOLOv4介绍YOLOv4是YOLO系列的第四个版本,继承了YOLOv3的高效性,并通过大量优化和改进,在目标检测任务中实现了更高的精度和速度。相比YOLOv3,YOLOv4在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检测的同时,显著提升了检测性能,尤其在复杂场景中的表现尤为出色。相比YOLOv3的改进与优势改进的Backbone(CSPDarknet-53)YOLOv4使用
- Vue前端框架选型论证
2401_84434086
程序员前端框架vue.js前端
Model:负责保存应用数据,与后端数据进行同步Controller:负责业务逻辑,根据用户行为对Model数据进行修改View:负责视图展示,将model中的数据可视化出来。但是,但是前端MVC也存在一些严重的问题:model和view的数据交互,非常的混乱,而且维护起来非常麻烦。这就是灵活开发带来的后遗症。拿backbone举个例子,backbone将Model的set和on方法暴露出来,方便
- 2011705918
qq_28091803
iOS传感器应用开发最佳实践_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1dDtSP2LNode应用程序构建使用MongoDB和Backbone_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1c04KnNMPhoneGap移动应用开发手册_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1mgssE
- 云计算的PDF
qq2011705918
IT电子书pdf
iOS传感器应用开发最佳实践_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1dDtSP2LNode应用程序构建使用MongoDB和Backbone_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1c04KnNMPhoneGap移动应用开发手册_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1mgssE
- YOLOv9网络框架
小远披荆斩棘
YOLOv8v9v10等实验与论文总结YOLO
#YOLOv9#parametersnc:80#numberofclassesdepth_multiple:1.0#modeldepthmultiplewidth_multiple:1.0#layerchannelmultiple#activation:nn.LeakyReLU(0.1)#activation:nn.ReLU()#anchorsanchors:3#YOLOv9backbonebac
- MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出
端木的AI探索屋
bevfusiononnx量化自动驾驶bevfusion
目录综述export-camera.py加载模型加载数据生成需要导出成onnx的模块Backbone模块VTransform模块生成onnx使用pytorch原生的伪量化计算方法导出camera.backbone.onnx导出camera.vtransform.onnx综述bevfusion的各个部分的实现有着鲜明的特点,并且相互独立,特别是考虑到后续部署的需要,这里将整个网络,分成多个部分,分别
- 挑战杯 YOLOv7 目标检测网络解读
laafeer
python
文章目录0前言1yolov7的整体结构2关键点-backbone关键点-head3训练4使用效果5最后0前言世界变化太快,YOLOv6还没用熟YOLOv7就来了,如果有同学的毕设项目想用上最新的技术,不妨看看学长的这篇文章,学长带大家简单的解读yolov7,目的是对yolov7有个基础的理解。从2015年的YOLOV1,2016年YOLOV2,2018年的YOLOV3,到2020年的YOLOV4、
- Transformer实战-系列教程17:DETR 源码解读4(Joiner类/PositionEmbeddingSine类/位置编码/backbone)
机器学习杨卓越
Transformer实战transformer深度学习人工智能计算机视觉pytorchDETR
Transformer实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传点我下载源码DETR算法解读DETR源码解读1(项目配置/CocoDetection类)DETR源码解读2(ConvertCocoPolysToMask类)DETR源码解读3(DETR类)DETR源码解读4(Joiner类/PositionEmbedding
- MIT-BEVFusion系列七--量化2_Camera、Fuser、Decoder网络的量化
端木的AI探索屋
自动驾驶算法python人工智能网络
目录Camera量化CameraBackbone(Resnet50)量化替换量化层,增加residual_quantizer,修改bottleneck的前向对Add操作进行量化CameraNeck(GeneralizedLSSFPN)量化将Conv2d模块替换为QuantConv2d模块CameraNeck中添加对拼接操作的量化替换CameraNeck中的ForwardCameraVTransfo
- MIT-BEVFusion系列七--量化1_公共部分和激光雷达网络的量化
端木的AI探索屋
bevfusion自动驾驶算法python人工智能
目录官方readme的Notesptq.py量化模块初始化解析命令行参数加载配置信息创建dataset和dataloader构建模型模型量化Lidarbackbone量化稀疏卷积模块量化量化完的效果加法模块量化本文是Nvidia的英伟达发布的部署MIT-BEVFusion的方案官方readme的Notes这是是官方提到的量化时需要注意的三个方面:1)在模型进行前向时,使用融合BN层可以为模型带来更
- Unet 实战分割项目、多尺度训练、多类别分割
听风吹等浪起
图像分割深度学习人工智能机器学习
1.介绍之前写了篇二值图像分割的项目,支持多尺度训练,网络采用backbone为vgg的unet网络。缺点就是没法实现多类别的分割,具体可以参考:二值图像分割统一项目本章只对增加的代码进行介绍,其余的参考上述链接博文本章实现的unet网络的多类别分割,也就是分割可以是两个类别,也可以是多个类别。训练过程仍然采用多尺度训练,即网络会随机将图片缩放到设定尺寸的0.5-1.5倍之间文件目录如下:2.实现
- Unet+ResNet 实战分割项目、多尺度训练、多类别分割
听风吹等浪起
图像分割人工智能计算机视觉
1.介绍传统的Unet网络,特征提取的backbone采用的是vgg模型,vgg的相关介绍和实战参考以前的博文:pytorch搭建VGG网络VGG的特征提取能力其实是不弱的,但网络较为臃肿,容易产生梯度消失或者梯度爆炸的问题。而Resnet可以解决这一问题,参考:ResNet训练CIFAR10数据集,并做图片分类本章在之前文章的基础上,只是将Unet的backbone进行替换,将vgg换成了res
- LLM之LangChain(七)| 使用LangChain,LangSmith实现Prompt工程ToT
wshzd
LangChain笔记langchainprompt
如下图所示,LLM仍然是自治代理的backbone,可以通过给LLM增加以下模块来增强LLM功能:PrompterAgentCheckerModuleMemorymoduleToTcontroller当解决具体问题时,这些模块与LLM进行多轮对话。这是基于LLM的自治代理的典型情况,其中动态创建链并按顺序执行,同时多次轮询LLM。下图是LangSmith[1]的界面,从图中可以看到使用的token
- 大模型实践笔记(2)——Clip改进:通过文本检索视频帧
不会写代码!!
人工智能LLMPython学习深度学习大数据
目录超参数设置配置LLM-clip的backbone文本编码抽取视频帧并编码视频帧匹配保存结果帧工程流全是干货超参数设置#超参数设置PARAMS={"clip_model":"openai/clip-vit-base-patch32",#推理模型名称"video_folder":"./video_test",#视频文件夹路径"text_description":"Aphotoofapersonwe
- ODOO--OWL简介
姜振建 15954039008
odoojavascript前端前端框架
1.什么是OWLOWL是Odoo创建的前端开发框架。这是他们在最新版本的Odoo(版本14)中引入的一个框架,以使前端代码更好一些。如果您熟悉其他前端框架,如React、Vue、Angular、Backbone等,那么您将很快了解OWL。它遵循许多相同的模式和想法。如果您不熟悉前端框架的概念,那么最近的框架都围绕着消除过去通常使用javascript完成的琐碎事务性工作的想法展开。我相信您熟悉数百
- YOLOv8算法改进【NO.91】引入RCS-YOLO算法模块
人工智能算法研究院
首发创新改进方法YOLO算法改进系列YOLO算法transformer
前言YOLO算法改进系列出到这,很多朋友问改进如何选择是最佳的,下面我就根据个人多年的写作发文章以及指导发文章的经验来看,按照优先顺序进行排序讲解YOLO算法改进方法的顺序选择。具体有需求的同学可以私信我沟通:第一,创新主干特征提取网络,将整个Backbone改进为其他的网络,比如这篇文章中的整个方法,直接将Backbone替换掉,理由是这种改进如果有效果,那么改进点就很值得写,不算是堆积木那种,
- 深度学习知识点汇总-目标检测(1)
深度学习模型优化
8.1R-FCNR-FCN属于two-stage的目标检测算法。backbone部分RPN,这里使用ResNet。head部分R-FCN,使用全连接网络。其中ResNet-101+R-FCN的方法在PASCALVOC2007测试数据集的mmAP达到83.6%。图1人脸检测R-FCN的核心思想得到目标多个特征。假设我们只有一个特征图用来检测右眼。那么我们可以使用它定位人脸吗?应该可以。因为右眼应该在
- YOLOv8 : 网络结构
赛先生.AI
YOLOv8YOLO计算机视觉目标检测
一.YOLOv8网络结构1.BackboneYOLOv8的Backbone同样参考了CSPDarkNet-53网络,我们可以称之为CSPDarkNet结构吧,与YOLOv5不同的是,YOLOv8使用C2f(CSPLayer_2Conv)代替了C3模块(如果你比较熟悉YOLOv5的网络结构,那YOLOv8的网络结构理解起来就easy了)。如图1所示为YOLOv8网络结构图(引用自MMYOLO),对比
- 点云transformer算法: FlatFormer 论文阅读笔记
zhaoyqcsdn
深度学习transformer算法论文阅读
代码:https://github.com/mit-han-lab/flatformer论文:https://arxiv.org/abs/2301.08739[FlatFormer.pdf]Flatformer是对点云检测中的backbone3d部分的改进工作,主要在探究怎么高效的对点云应用transformer具体的工作如下:一个缩写:**PCTs即pointcloudtransformers*
- 最新模型VMamba:颠覆视觉Transformer,下一代主流Backbone?
深蓝学院
计算机视觉CNN
论文标题:VMamba:VisualStateSpaceModel论文作者:YueLiu,YunjieTian,YuzhongZhao,HongtianYu,LingxiXie,YaoweiWang,QixiangYe,YunfanLiu1.摘要卷积神经网络(CNN)与视觉Transformer(ViT)是目前最流行的两种视觉表征基础模型。CNN在线性复杂度下,具有惊人的可扩展性。ViTs在性能方
- Transformer实战-系列教程7:SwinTransformer 算法原理 1
机器学习杨卓越
Transformer实战人工智能深度学习Transformer计算机视觉图像分割swinTransformer
Transformer实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传1、SwinTransformerSwinTransformer可以看作为一个backbone用来做分类、检测、分割都是非常好的也可以直接套用在下游任务中不仅源码公开了,预训练模型也公开了预训练模型提供大中小三个版本图像中的像素点太多了,如果需要更多的特征就
- 【DeepLearning-10】yolo.py文件关键代码parse_model(d, ch)函数
风筝超冷
YOLO
这段代码功能是根据提供的配置字典(d)和输入通道列表(ch)来解析并构建一个YOLOv5模型。函数的核心工作是遍历模型的每一层,并根据配置创建相应的神经网络层。我们可以在函数中为新增模块配置构造参数设置。函数中fori,(f,n,m,args)inenumerate(d['backbone']+d['head']):#from,number,module,args这一部分对应yolo.yaml文件
- YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读
Prime's Blog
深度学习深度学习训练营YOLO
YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读一、前言二、我的环境三、yolov5s.yaml源文件内容四、Parameters五、anchors配置六、backbone七、head八、总结OLOv5-第Y2周:训练自己的数据集)YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读一、前言本文为365天深度学习
- 目标检测任务的调研与概述
Alexa2077
目标检测目标跟踪人工智能
目标检测任务的调研与概述0FQA1目标检测任务基本知识:1.1什么是目标检测?1.2目标检测的损失函数都有那些?1.2.1类别损失:1.2.2位置损失:1.3目标检测的评价指标都有那些?1.4目标检测有那些常见的数据集?2目标检测的进阶知识:2.1经典的backbone:2.2目标检测器-传统的检测方法2.3目标检测器-两阶段的检测方法:2.3.1R-CNN开山之作2.3.2SPP-Net2.3.
- 【计算机视觉 | 目标检测】DETR风格的目标检测框架解读
旅途中的宽~
目标检测经典论文导读计算机视觉开放域目标检测计算机视觉目标检测深度学习DETR
文章目录一、前言二、理解2.1DETR的理解2.2DETR的细致理解2.2.1Backbone2.2.2Transformerencoder2.2.3Transformerdecoder2.2.4Predictionfeed-forwardnetworks(FFNs)2.2.5Auxiliarydecodinglosses2.3更具体的结构2.4编码器的原理和作用2.5解码器的原理和作用三、注意力
- CS455 Computer Communications and Networking
zhuyu0206girl
网络
Answerthefollowingquestions[100pt]1.[18pt]Thefollowingfigureshows7interconnectedASes:A,B,C,V,W,XandY.ASA,BandCareprovidednetworks(e.g.,backboneASes)andV,W,XandYaretheircustomernetworks(e.g.,accessnetw
- 简单了解YOLOv8
望外追晚
YOLO
简单介绍YOLOv8这里主要关注模型的backbone和后处理的过程,并通过对比YOLOv5的架构来更深入的了解YOLOv8。模型框架YOLOv5中的C3替换为更精简的C2f,即增加了更多的跳跃连接和split操作;Backbone中C2f的block数从3-6-9-3改成了3-6-6-3;耦合头变成了解耦头,分类和回归分为两个分支分别进行;数据前处理1、letterbox缩放:yolov8的输入
- 《RT-DETR魔术师》专栏介绍 & CSDN独家改进创新实战 & 专栏目录
AI小怪兽
RT-DETR魔术师人工智能计算机视觉算法pytorch开发语言python深度学习
RT-DETR魔术师专栏介绍:https://blog.csdn.net/m0_63774211/category_12497375.html✨✨✨魔改创新RT-DETR引入前沿顶会创新(CVPR2023,ICCV2023等),助力RT-DETR基于ultralytics优化,与YOLO完美结合重点:通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、detec
- 《YOLO小目标检测》专栏介绍 & CSDN独家改进创新实战&专栏目录
AI小怪兽
YOLO小目标检测目标跟踪算法人工智能目标检测YOLO深度学习计算机视觉
Yolo小目标检测,独家首发创新(原创),适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,带你轻松实现小目标检测涨点重点:通过本专栏的阅读,后续你可以结合自己的小目标检测数据集,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现小目标涨点和创新!!!专栏介绍:✨✨✨解决小目标检测难点并提升小目标检测性能;小目标、遮挡
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少