模拟退火算法介绍
3 模拟退火算法的参数
模拟退火是一种优化算法,它本身是不能独立存在的,需要有一个应用场合,其中温度就是模拟退火需要优化的参数,如果它应用到了聚类分析中,那么就是说聚类分析中有某个或者某几个参数需要优化,而这个参数,或者参数集就是温度所代表的。它可以是某项指标,某项关联度,某个距离等等。
clear all
close all
clc
tic
%% 基础参数输入
NIND=100; %种群大小
MAXGEN=200; %遗传代数
GGAP=0.9; %代沟
Pc=0.75; %交叉概率
Pm=0.1; %变异概率
const=20; %客户个数
X=[3.2,14.1;3.8,5.5;15.2,10.9;18.6,12.9;11.9,8.2;10.2,9.5;5.3,9.6;0.6,9.9;6.1,18.0;7.6,19.2
16.0,15.7;15.3,15.2;1.6,14.7;9.0,9.2;5.4,13.3;7.8,10.0;18.6,7.8;14.5,4.3;15.0,18.7;9.8,5.0;1.4,6.9]; %需求点位置坐标,1号点为出发点
carload_min=3; %小型车的载重限制
demand=[0.8,0.6,0.4,1.4,0.8,0.6,1.9,1.3,1.8,1.5,0.4,1.6,1.1,1.6,1.0,0.8,1.4,1.2,0.4,1.4]; %服务点需求
D=Distanse(X);
%% 种群初始化
Chrom=zeros(NIND,const);
for i=1:NIND
Chrom(i,:)=randperm(const); %种群初始化
end
%% 画出随机解的路径图
[ObjV,route]=PathLength(D,Chrom); %计算路线长度和路径
preObjV=min(ObjV); %初始种群的最优个体
route_initial=routemake(route,1); %第一个个体的路径
% DrawPath(route_initial,X);
% hold off
% pause(0.0001);
%% 输出随机解的路径和总距离
disp('初始种群中的一个随机值:')
OutputPath(route_initial);
disp(['总成本:',num2str(ObjV(1))]);
disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
%% 计算目标函数
%% 优化
gen=0;
MinY=inf;
trace=zeros(MAXGEN,1);
h=waitbar(0,'程序启动中,请等待...');
while gen<MAXGEN
%% 计算适应度
[ObjV,route]=PathLength(D,Chrom); %计算路线长度
%line([gen-1,gen],[preObjV,min(ObjV)]);
%pause(0.0001)
%preObjV=min(ObjV);
% 适应度函数计算
FitnV=Fitness(ObjV);
% 选择
SelCh=Select(Chrom,FitnV,GGAP);
% 交叉操作
SelCh=Recombin(SelCh,Pc);
% 变异
SelCh=Mutate(SelCh,Pm);
% 逆转操作
SelCh=Reverse(SelCh,D);
% 重插入子代的新种群
Chrom=Reins(Chrom,SelCh,ObjV);
% 更新迭代次数
gen=gen+1;
% 最优解保存
[minObjV,minInd]=min(ObjV); %计算最优解
route_new=routemake(route,minInd); %最终路径
if minObjV<MinY
MinY=minObjV;
best_route=route_new;
trace(gen,1)=MinY;
else
trace(gen,1)=trace(gen-1,1);
end
str=['程序正常运行中,','已迭代',num2str(gen),'次'];
waitbar(gen/MAXGEN,h,str);
pause(0.05);
end
%% 绘制
plot(1:gen,trace);
title('优化过程');
xlabel('迭代次数');
ylabel('最优值');
hold off
%% 画出最优解的路线图
[car1_num,car2_num]=car_type(best_route,demand,carload_min);%输出各种车型的数量
Num_car=car1_num+car2_num;
DrawPath(best_route,X);
hold off
版本:2014a