- 外贸英语报价单制作步骤分享,可在线编辑
财务管理系统财务软件进销存系统
在国际贸易中,一份专业、清晰的外贸英语报价单是赢得客户信任的关键工具。它不仅需要准确传递产品信息与价格条款,还需符合国际商务规范。本文将深入解析外贸英语报价单的核心要素,并介绍如何通过ZohoBooks快速制作标准化模板,提升业务效率与竞争力。一、外贸英语报价单模板的核心要素一份完整的报价单需涵盖以下关键内容:1、基础信息标题与编号:明确标注“Quotation”或“ProformaInvoice
- DeepSeek带来服务器与显卡需求激增的核心逻辑
DeepSeek+NAS
人工智能服务器运维网络安全计算机网络
随着DeepSeek等开源AI模型的普及,个人开发者和小型企业正加速构建私有化AI服务器,以处理敏感数据和定制化任务。这种趋势不仅重构了算力需求的结构,更推动服务器和显卡市场进入新一轮增长周期。以下从技术迭代、行业需求、市场格局三个维度展开论述。一、私有化部署:从数据安全到算力自主的核心驱动力数据隐私与合规性需求公共AI平台的数据泄露风险促使企业选择本地化部署。例如,医疗机构的患者数据、金融企业的
- vr中的计算机知识,VR技术基本常识
淡庸
vr中的计算机知识
虚拟现实技术是仿真技术的一个重要方向是仿真技术与计算机图形学人机接口技术多媒体技术传感技术网络技术等多种技术的集合是一门富有挑战性的交叉技术前沿学科和研究领域。虚拟现实技术(VR)主要包括模拟环境、感知、自然技能和传感设备等方面。模拟环境是由计算机生成的、实时动态的三维立体逼真图像。感知是指理想的VR应该具有一切人所具有的感知。除计算机图形技术所生成的视觉感知外,还有听觉、触觉、力觉、运动等感知,
- YOLOv12优化:图像去噪 | AAAI2025 Transformer |一种基于Transformer的盲点网络(TBSN)架构 ,结合空间和通道自注意力层来增强网络能力
AI小怪兽
YOLOv12魔术师YOLOtransformer深度学习人工智能python
提出了一种基于Transformer的盲点网络(TBSN)架构,通过分析和重新设计Transformer运算符以满足盲点要求。TBSN遵循扩张BSN的架构原则,并结合空间和通道自注意力层来增强网络能力。如何使用:1)结合C3k2二次创新使用;2)结合A2C2f二次创新使用;亮点包括:1.提出了一种新的基于Transformer的盲点网络(TBSN)架构;2.引入了知识蒸馏策略来提高计算效率;3.在
- 无人机喊话系统:空中扩音器的科技密码!
云卓SKYDROID
无人机科技人工智能云卓科技科普高科技
一、技术核心:空中声波系统的三重架构1.声源处理中枢支持双模输入:麦克风实时采集与数字音频导入搭载DSP数字信号处理器,实现动态降噪(信噪比>70dB)自适应EQ调节,针对不同场景优化频响曲线(如灾害现场增强低频穿透力)2.定向声场发生器采用相控阵扬声器技术,波束角可调范围15°-60°声压级最高达125dB(相当于喷气式飞机起飞噪音)有效投射距离300米(静风环境下)3.飞控集成平台专用减震支架
- 支付宝MAU全解析:小程序生态的核心指标
ckx666666cky
小程序性能优化支付宝搜索引擎支付宝mau支付宝mau优化
支付宝作为中国领先的移动支付和生活服务平台,其月活跃用户数(MonthlyActiveUsers,简称MAU)是衡量平台活力和商业价值的关键指标。MAU不仅反映了用户对平台的黏性和活跃度,还直接影响支付宝的商业潜力和市场竞争力。支付宝MAU概况截至最近公开数据,支付宝的MAU已突破9亿,这一庞大的用户基础为支付宝小程序生态提供了强大的流量支持。与微信支付等竞争对手相比,支付宝用户群体具有更强的消费
- 架构设计的灵魂交响曲:系统设计各维度的深度解析与实战指南
领码科技
IT职场技能篇架构设计系统设计功能模块模型驱动协同设计
引言:系统设计的背景与重要性在快速变化的技术环境中,数字化转型成为企业生存与发展的核心驱动力。系统设计能力不仅是技术团队的核心竞争力,也是推动业务创新和提升整体效率的关键因素。根据Gartner的研究,超过70%的数字化转型项目未能实现预期结果,这强调了有效系统设计的重要性。企业需通过科学合理的系统设计来应对市场变化、用户需求和技术发展,从而实现更高的业务价值。文章将深入探讨架构设计的各个维度,通
- 【人工智能】注意力机制深入理解
问道飞鱼
机器学习与人工智能人工智能注意力机制
文章目录**一、注意力机制的核心思想****二、传统序列模型的局限性****三、Transformer与自注意力机制****1.自注意力机制的数学公式****四、注意力机制的关键改进****1.稀疏注意力(SparseAttention)****2.相对位置编码(RelativePositionEncoding)****3.图注意力网络(GraphAttentionNetwork,GAN)****
- Transformer与图神经网络的融合与应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer与图神经网络的融合与应用关键词:Transformer,图神经网络,注意力机制,图结构数据,图表示学习,图分类,图生成1.背景介绍近年来,深度学习技术在各个领域取得了显著的进展。其中,Transformer模型和图神经网络(GraphNeuralNetworks,GNNs)是两个备受关注的研究方向。Transformer最初应用于自然语言处理领域,通过自注意力机制实现了并行计
- Ai时代初期,人类文明的多纬度演进方向分析
Ai度
人工智能
在AI时代初期,文明的演进呈现出多维度、跨领域的突破性特征,结合最新研究进展与实践案例,其深层变革可进一步细化为以下六大维度:一、技术平权与生产要素重构AI技术通过算力跃迁与认知革命重构生产要素。例如,华为昇腾芯片使县域政务系统获得省级决策能力,特斯拉工厂的机械臂实现0.8秒完成车身焊接,而量子-经典混合算法将药物分子模拟效率提升1200倍。这种技术平权运动正推动全球劳动生产率提升30%,同时催生
- 2024自学手册——网络安全(黑客技术)
网安CILLE
web安全安全网络
前言什么是网络安全网络安全可以基于攻击和防御视角来分类,我们经常听到的“红队”、“渗透测试”等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。如何成为一名黑客很多朋友在学习安全方面都会半路转行,因为不知如何去学,在这里,我将这个整份答案分为黑客(网络安全)入门必备、黑客(网络安全)职业指南、黑客(网络安全)学习导航三大章节,涉及价值观、方法论、执行力、行业分类、职位解读、法
- 基于Wasm的边缘计算Pandas:突破端侧AI的最后一公里——让数据分析在手机、IoT设备上飞驰
Eqwaak00
Pandas人工智能wasm边缘计算pandas架构深度学习
引言:边缘计算的算力觉醒在智能家居设备每秒产生数万条传感器数据、手机App需要实时分析用户行为的今天,传统云计算模式面临高延迟、隐私风险、带宽成本三大挑战。本文将揭示如何通过WebAssembly(Wasm)+Pandas的技术组合,在边缘设备上实现零云端依赖的实时数据分析,并通过智慧工厂设备预测性维护案例,展示从理论到工程的全链路实现。一、技术架构设计1.1边缘计算范式演进mermaid:gra
- 实测 Gemini 2.0 Flash 图像生成:多模态 AI 的创作力边界
python
近日,Google发布了Gemini2.0Flash的实验性图像生成功能(Gemini2.0Flash(ImageGeneration)Experimental)。我也第一时间体验了这一功能,再次感受到AI技术对传统图像处理工具的颠覆性冲击。本文从主要功能、安装方法、应用场景,并通过实际测试展示其能力,希望帮助大家更好地了解和使用这一工具。引言Gemini2.0Flash的实验性图像生成功能于20
- DeepLabv3+改进18:在主干网络中添加REP_BLOCK
AICurator
深度学习python机器学习deeplabv3+语义分割
【DeepLabv3+改进专栏!探索语义分割新高度】你是否在为图像分割的精度与效率发愁?本专栏重磅推出:✅独家改进策略:融合注意力机制、轻量化设计与多尺度优化✅即插即用模块:ASPP+升级、解码器PS:订阅专栏提供完整代码论文简介我们提出了一种通用的卷积神经网络(ConvNet)构建模块,可在不增加推理时间成本的情况下提升性能。该模块名为多样化分支块(DBB),通过结合不同尺度和复杂度的多样化分支
- 使用opengl绘制立方体_一步步学OpenGL(25) -《Skybox天空盒子》
weixin_39962153
使用opengl绘制立方体
教程25Skybox天空盒子原文:http://ogldev.atspace.co.uk/www/tutorial25/tutorial25.htmlCSDN完整版专栏:https://blog.csdn.net/cordova/article/category/9266966背景天空盒子是一种让场景看上去更广阔无垠的一种视觉技术,用无缝对接的封闭纹理将摄像机的视口360度无死角的包裹起来。封闭纹
- 算力技术演进与多场景融合路径
智能计算研究中心
其他
内容概要算力技术的演进正经历从异构计算到量子计算的范式跃迁。当前技术图谱中,芯片制程突破与架构创新持续推动算力密度提升,如5nm以下先进工艺与存算一体设计显著增强运算单元效率。与此同时,模型压缩、数据预处理等算法优化手段使单位算力产出提高30%以上。典型应用场景中,工业互联网通过自适应计算实现毫秒级实时控制,医疗影像领域借助分布式计算完成TB级数据处理,而智能安防系统依托边缘计算降低端到端时延至5
- 金融风控算法透明度与可解释性优化
智能计算研究中心
其他
内容概要金融风控算法的透明化研究面临模型复杂性提升与监管合规要求的双重挑战。随着深度学习框架在特征提取环节的广泛应用,算法可解释性与预测精度之间的平衡成为核心议题。本文从联邦学习架构下的数据协作机制出发,结合特征工程优化与超参数调整技术,系统性分析逻辑回归、随机森林等传统算法在召回率、F1值等关键指标上的表现差异。研究同时探讨数据预处理流程对风控决策鲁棒性的影响,并提出基于注意力机制的特征权重可视
- 联邦学习算法安全优化与可解释性研究
智能计算研究中心
其他
内容概要本研究围绕联邦学习算法的安全性优化与模型可解释性增强展开系统性探索。首先,针对联邦学习中数据隐私泄露与模型性能损耗的固有矛盾,提出一种融合差分隐私与动态权重聚合的协同优化框架,通过分层加密机制降低敏感信息暴露风险。其次,引入可解释性算法(如LIME与SHAP)构建透明化决策路径,结合注意力机制实现特征贡献度的可视化映射,有效提升模型在医疗影像异常检测与金融欺诈识别场景中的可信度。此外,研究
- 算力融合创新与多场景应用生态构建
智能计算研究中心
其他
内容概要算力作为数字经济的核心驱动力,正经历从单一计算范式向融合架构的跨越式演进。随着异构计算、光子计算等底层技术的突破,算力资源逐步形成跨架构协同、多模态联动的智能供给体系,支撑工业互联网、医疗影像、智能安防等场景实现效率跃升。与此同时,量子计算与神经形态计算的前沿探索,正在重塑科学计算与实时决策的技术边界。建议行业关注算力可扩展性与安全标准的协同设计,通过动态调度算法与分布式架构优化,构建弹性
- 下一代模型技术演进与场景应用突破
智能计算研究中心
其他
内容概要当前模型技术正经历多维度的范式跃迁,可解释性模型与自动化机器学习(AutoML)成为突破传统黑箱困境的核心路径。在底层架构层面,边缘计算与量子计算的融合重构了算力分配模式,联邦学习技术则为跨域数据协作提供了安全可信的解决方案。主流框架如TensorFlow和PyTorch持续迭代优化能力,通过动态参数压缩与自适应超参数调优策略,显著提升模型部署效率。应用层创新呈现垂直化特征,医疗诊断模型通
- 人工智能知识架构详解
CodeJourney.
数据库人工智能算法架构
人工智能(ArtificialIntelligence,简称AI)作为当今最具影响力和发展潜力的技术领域之一,正深刻地改变着我们的生活、工作和社会。从智能家居到自动驾驶,从医疗诊断到金融投资,人工智能的应用无处不在。要全面深入地理解和掌握人工智能,构建一个清晰、系统的知识架构至关重要。二、基础数学(一)线性代数线性代数是人工智能的重要数学基础之一。矩阵运算在数据表示和变换中起着核心作用。例如,在图
- C语言的回溯算法
苏墨瀚
包罗万象golang开发语言后端
C语言中的回溯算法引言回溯算法(Backtracking)是一种通过搜索所有可能的候选解,找到符合条件的解的算法。它常用于解决一些组合问题、约束满足问题和优化问题。回溯算法的核心思想是通过尝试并逐步构建解的过程,在发现某个解不能继续时,从当前解的最后一个决策点“回溯”到之前的状态,进行其他可能性的探索。在这篇文章中,我们将探讨回溯算法的基本思想、基本框架及其在C语言中的具体实现,应用实例等。回溯算
- 网络安全工程师有职业寿命吗,能干多久?
网络安全(king)
黑客网络工程师网络安全网络web安全安全phpandroid
你说的这个网络安全工程师是,网络安全,还是信息安全,分开答吧。如果是网络安全,就是调试防火墙的网络工程师。这个大概率是在乙方或者厂商,因为甲方不会单独搞一个岗位调试防火墙。如果在厂商,后续可以转TAC,转研发,转HR(转了HR也算这个职业寿命结束了)。大部分可以到35-40.后续转了,也不大算网络安全工程师了吧。如果是乙方,大概率35左右到头,如果不升职,确实这个不太好,防火墙容量就这么大,而且很
- 【AI论文】RWKV-7“鹅”模型,具备富有表现力的动态状态演化能力
东临碣石82
人工智能
摘要:我们推出RWKV-7“鹅”,这是一种全新的序列建模架构,同时发布的还有预训练语言模型。在多语言任务中,这些模型在30亿参数规模下实现了下游性能的全新最优水平,并且在英语语言性能上,尽管训练所用的标记数量远少于其他顶尖30亿参数模型,但仍能与当前最优水平相媲美。然而,RWKV-7模型仅需常量内存使用和每个标记的常量推理时间。RWKV-7引入了一种新泛化的delta规则,该规则具有向量值门控和上
- Multi-view graph convolutional networks with attention mechanism
小源er
图论和图神经网络机器学习机器学习深度学习人工智能
摘要传统的图卷积网络关注于如何高效的探索不同阶跳数(hops)的邻居节点的信息。但是目前的基于GCN的图网络模型都是构建在固定邻接矩阵上的即实际图的一个拓扑视角。当数据包含噪声或者图不完备时,这种方式会限制模型的表达能力。由于数据的测量或者收集会不可避免的会出现错误,因此基于固定结构的图模型表达能力是不充分的。本文提出了基于注意力机制的多视图图卷积网络,将拓扑结构的多个视图和基于注意力的特征聚合策
- 云原生边缘计算:分布式智能的时代黎明
桂月二二
云原生边缘计算分布式
引言:从集中式算力到万物智联的范式裂变AT&T边缘节点部署超5000个,特斯拉自动驾驶系统每节点200TOPS算力。国家电网通过边缘计算实现毫秒级电网故障隔离,菜鸟物流分拣效率提升400%。IDC预测2027年边缘基础设施支出将达亿,宝马汽车工厂设备预测性维护准确率达9亿运维成本。一、边缘计算范式进化论1.1算力拓扑结构演变世代大型主机中心化云计算分布式雾计算去中心化边缘计算泛在化神经形态计算体计
- 项目经理面试全攻略:从底层能力拆解到高通过率话术
在竞争激烈的职场中,项目经理岗位的面试堪称“综合能力大考”——既要展现系统化的方法论,又要传递真实的领导力,还要让考官相信你能在复杂环境中推动结果落地。据PMI(美国项目管理协会)调查,82%的优秀项目经理在面试中能清晰呈现“业务价值-团队协作-风险控制”的三角能力模型。本文从能力拆解、面试准备、实战话术三个维度,揭秘项目经理面试通关法则。一、项目经理面试的四大核心能力雷达图面试官通过以下维度评估
- 项目经理的“汇报力”修炼:如何快速打造让领导、客户眼前一亮的方案?
在项目管理领域,流传着一句话:“干得好不如说得好,说得好不如呈现得好。”项目经理作为“资源整合者”和“信息枢纽”,70%以上的工作本质是沟通与汇报——向上争取资源,向下传递目标,向外管理客户预期。能否快速产出逻辑清晰、价值聚焦的汇报方案,直接决定了项目的推进效率与个人职业发展天花板。一、项目经理的工作本质:用汇报“撬动”资源项目经理的日常不是埋头写代码或画图纸,而是通过系统性表达解决三类核心问题:
- 信创产品在政府采购中的五大优势
程序员
信创产品在政府采购中扮演着越来越重要的角色,其优势逐渐凸显,为政府采购领域带来了诸多积极影响。随着信息技术的飞速发展和国家对自主创新的高度重视,信创产品凭借自身独特的特性,在政府采购市场中展现出强大的竞争力。以下将详细阐述信创产品在政府采购中的五大优势。安全性更高在数字化时代,信息安全至关重要,尤其是对于政府采购项目,涉及大量敏感信息和公共利益。信创产品在安全性方面具有显著优势。首先,信创产品的研
- OpenBayes 教程上新丨单卡A6000轻松部署Gemma 3,精准识别黄仁勋演讲实拍
3月12日晚间,谷歌发布了「单卡大魔王」Gemma3,号称是能在单个GPU或TPU上运行的最强模型,真实战绩也证实了官方blog所言非虚——其27B版本击败671B的满血DeepSeekV3,以及o3-mini、Llama-405B,仅次于DeepSeekR1,但在算力需求方面却远低于其他模型。如下图所示:*按照ChatbotArenaElo分数对模型进行排名;圆点表示预估的算力需求随后,谷歌也是
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号