Android: 理解ThreadLocal的工作原理

前言

ThreadLocal是一个我了解后很喜欢的东西,这种思路使得变量的作用域限于线程内,并且不同线程具有不同的数据副本。典型应用场景即Looper,每个线程有且只有一个Looper,同时,不同线程对应不同的Looper,而Handler在创建时,就可以获得当前线程的Looper,使得回调时,也能切换回该线程。

新建对象

在使用ThreadLocal时,需要新建对象:

//ActivitayThread中也使用了ThreadLocal
    private static final ThreadLocal sCurrentBroadcastIntent = new ThreadLocal();

ThreadLocal 是一个泛型类,并且就该类本身只有有限的几个方法,同时还有两个静态内部类,可以看出,看懂get和set方法的情况下,基本就可以了解ThreadLocal的工作原理,已添加注释解析,如下所示。


    private final int threadLocalHashCode = nextHashCode();

 
    private static AtomicInteger nextHashCode =
        new AtomicInteger();


    private static final int HASH_INCREMENT = 0x61c88647;

    private static int nextHashCode() {
        return nextHashCode.getAndAdd(HASH_INCREMENT);
    }


    protected T initialValue() {
        return null;
    }


    public static  ThreadLocal withInitial(Supplier supplier) {
        return new SuppliedThreadLocal<>(supplier);
    }


    public ThreadLocal() {
    }


    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            //获取对应的value
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        //懒加载,未设置过值时会调用该方法,初始化map添加该TreadLocal的一对Key:Value Value为null
        return setInitialValue();
    }


    private T setInitialValue() {
        T value = initialValue();
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
        return value;
    }


    public void set(T value) {
        //获取当前线程以及对应的map
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
          //把当前ThreadLocal作为key
            map.set(this, value);
        else
            //初始化
            createMap(t, value);
    }


     public void remove() {
         ThreadLocalMap m = getMap(Thread.currentThread());
         if (m != null)
             m.remove(this);
     }

    //每个线程里都保存着一个ThreadLocal.ThreadLocalMap的变量,由ThreadLocalMap维护ThreadLocal的值
    ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }

    void createMap(Thread t, T firstValue) {
        t.threadLocals = new ThreadLocalMap(this, firstValue);
    }


    static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
        return new ThreadLocalMap(parentMap);
    }


    T childValue(T parentValue) {
        throw new UnsupportedOperationException();
    }

    static final class SuppliedThreadLocal extends ThreadLocal {
        //...
    }
    static class ThreadLocalMap { {
        //...
    }

每个Thread都会持有一个ThreadLocalMap,前面提到这是ThreadLocal的一个内部类,这是一个只用来存放ThreadLocal的HashMap类,类中维护了一个table数组,并且该类还有一个静态内部类:Entry,Entry继承于WeakReference,有一个value的字段,WeakReference持有的ThreadLocal对象当做key,value则是对应ThreadLocal的值,该类比较长,这里只给出相关代码。

    static class ThreadLocalMap {
        //...
        /**
         * The table, resized as necessary.
         * table.length MUST always be a power of two.
         */
        private Entry[] table;

        /**
         * The entries in this hash map extend WeakReference, using
         * its main ref field as the key (which is always a
         * ThreadLocal object).  Note that null keys (i.e. entry.get()
         * == null) mean that the key is no longer referenced, so the
         * entry can be expunged from table.  Such entries are referred to
         * as "stale entries" in the code that follows.
         */
        static class Entry extends WeakReference> {
            /** The value associated with this ThreadLocal. */
            Object value;

            Entry(ThreadLocal k, Object v) {
                super(k);
                value = v;
            }
        }
      //...
      /**
         * Construct a new map initially containing (firstKey, firstValue).
         * ThreadLocalMaps are constructed lazily, so we only create
         * one when we have at least one entry to put in it.
         */
        ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
            table = new Entry[INITIAL_CAPACITY];
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
            table[i] = new Entry(firstKey, firstValue);
            size = 1;
            setThreshold(INITIAL_CAPACITY);
        }
  }

当创建一个ThreadLocal变量并且给它做get,set操作时,其实也是操作的ThreadLocalMap,所以接下来我们还需要看一下ThreadLocalMap这两个比较重要的方法,代码中直接插入注释解析。

        /**
         * Get the entry associated with key.  This method
         * itself handles only the fast path: a direct hit of existing
         * key. It otherwise relays to getEntryAfterMiss.  This is
         * designed to maximize performance for direct hits, in part
         * by making this method readily inlinable.
         *
         * @param  key the thread local object
         * @return the entry associated with key, or null if no such
         */
        //通过hashCode 与 当前数组的最大下标做与逻辑,直接得到目标下标。
        //判断与Key是否相等,不相等说明发生过Hash碰撞,ThreadLocalMap是开地址法,直接存入下一个空的区域。
        //无法直接探测到的全部交由getEntryAfterMiss方法去处理
        private Entry getEntry(ThreadLocal key) {
            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];
            if (e != null && e.get() == key)
                return e;
            else
                return getEntryAfterMiss(key, i, e);
        }

        /**
         * Version of getEntry method for use when key is not found in
         * its direct hash slot.
         *
         * @param  key the thread local object
         * @param  i the table index for key's hash code
         * @param  e the entry at table[i]
         * @return the entry associated with key, or null if no such
         */
        //主要是遍历冲突后的空间里是否能找到和key相等的ThreadLocal,当遇到null时,会去删除该位置的Entry。
        private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {
            Entry[] tab = table;
            int len = tab.length;

            while (e != null) {
                ThreadLocal k = e.get();
                if (k == key)
                    return e;
                if (k == null)
                    expungeStaleEntry(i);
                else
                    i = nextIndex(i, len);
                e = tab[i];
            }
            return null;
        }

        /**
         * Expunge a stale entry by rehashing any possibly colliding entries
         * lying between staleSlot and the next null slot.  This also expunges
         * any other stale entries encountered before the trailing null.  See
         * Knuth, Section 6.4
         *
         * @param staleSlot index of slot known to have null key
         * @return the index of the next null slot after staleSlot
         * (all between staleSlot and this slot will have been checked
         * for expunging).
         */
        //删除当前位置的Entry以后会遍历该位置后的空间,确认是否是因为Hash冲突而后移了存储位置,将其纠正回原位。
        //同时如果该Entry引用的ThreadLocal也已经被释放的话,删除该位置的值,直到下一个位置为null。
        private int expungeStaleEntry(int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;

            // expunge entry at staleSlot
            tab[staleSlot].value = null;
            tab[staleSlot] = null;
            size--;

            // Rehash until we encounter null
            Entry e;
            int i;
            for (i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal k = e.get();
                if (k == null) {
                    e.value = null;
                    tab[i] = null;
                    size--;
                } else {
                    int h = k.threadLocalHashCode & (len - 1);
                    if (h != i) {
                        tab[i] = null;

                        // Unlike Knuth 6.4 Algorithm R, we must scan until
                        // null because multiple entries could have been stale.
                        while (tab[h] != null)
                            h = nextIndex(h, len);
                        tab[h] = e;
                    }
                }
            }
            return i;
        }


理解get方法以后,set方法也很一目了然:


        /**
         * Set the value associated with key.
         *
         * @param key the thread local object
         * @param value the value to be set
         */
        
        private void set(ThreadLocal key, Object value) {

            // We don't use a fast path as with get() because it is at
            // least as common to use set() to create new entries as
            // it is to replace existing ones, in which case, a fast
            // path would fail more often than not.

            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);
        
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal k = e.get();
                //线性探测后如果该位置有值,且key相等,则直接覆盖value
                if (k == key) {
                    e.value = value;
                    return;
                }
                //ThreadLocal已经被释放,且存在hash冲突或者已经平移过几位,一次性向前整理所有无用的Entry,并替换值
                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }
            //新建一个Entry,同时如果已经存入的Entry数量超过threshold,会扩大table容量,删除已经释放TreadLocal的Entry
            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }
        /**
         * Re-pack and/or re-size the table. First scan the entire
         * table removing stale entries. If this doesn't sufficiently
         * shrink the size of the table, double the table size.
         */
        private void rehash() {
            expungeStaleEntries();

            // Use lower threshold for doubling to avoid hysteresis
            if (size >= threshold - threshold / 4)
                resize();
        }
        /**
         * Replace a stale entry encountered during a set operation
         * with an entry for the specified key.  The value passed in
         * the value parameter is stored in the entry, whether or not
         * an entry already exists for the specified key.
         *
         * As a side effect, this method expunges all stale entries in the
         * "run" containing the stale entry.  (A run is a sequence of entries
         * between two null slots.)
         *
         * @param  key the key
         * @param  value the value to be associated with key
         * @param  staleSlot index of the first stale entry encountered while
         *         searching for key.
         */
        private void replaceStaleEntry(ThreadLocal key, Object value,
                                       int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;
            Entry e;

            // Back up to check for prior stale entry in current run.
            // We clean out whole runs at a time to avoid continual
            // incremental rehashing due to garbage collector freeing
            // up refs in bunches (i.e., whenever the collector runs).
            int slotToExpunge = staleSlot;
            //向前查找过期值,找到最前的一个不为Null但是过期的值,也有可能是staleSlot
            for (int i = prevIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = prevIndex(i, len))
                if (e.get() == null)
                    slotToExpunge = i;

            // Find either the key or trailing null slot of run, whichever
            // occurs first
            for (int i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal k = e.get();

                // If we find key, then we need to swap it
                // with the stale entry to maintain hash table order.
                // The newly stale slot, or any other stale slot
                // encountered above it, can then be sent to expungeStaleEntry
                // to remove or rehash all of the other entries in run.
                if (k == key) {
                    e.value = value;

                    tab[i] = tab[staleSlot];
                    tab[staleSlot] = e;
                    //将之前存在Hash冲突后平移存储的位置进行互调换,并且从该位置开始做废弃条目的清除
                    // Start expunge at preceding stale entry if it exists
                    if (slotToExpunge == staleSlot)
                        slotToExpunge = i;
                    cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
                    return;
                }

                // If we didn't find stale entry on backward scan, the
                // first stale entry seen while scanning for key is the
                // first still present in the run.
                //向前查找没找到废弃Entry而向后找到时,将该位置赋值给slotToExpunge 
                if (k == null && slotToExpunge == staleSlot)
                    slotToExpunge = i;
            }
            //之前没有存过对应的ThreadLocal在该位置上存下Entry
            // If key not found, put new entry in stale slot
            tab[staleSlot].value = null;
            tab[staleSlot] = new Entry(key, value);
            //清除其他多余的废弃条目
            // If there are any other stale entries in run, expunge them
            if (slotToExpunge != staleSlot)
                cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
        }

        /**
         * Heuristically scan some cells looking for stale entries.
         * This is invoked when either a new element is added, or
         * another stale one has been expunged. It performs a
         * logarithmic number of scans, as a balance between no
         * scanning (fast but retains garbage) and a number of scans
         * proportional to number of elements, that would find all
         * garbage but would cause some insertions to take O(n) time.
         *
         * @param i a position known NOT to hold a stale entry. The
         * scan starts at the element after i.
         *
         * @param n scan control: {@code log2(n)} cells are scanned,
         * unless a stale entry is found, in which case
         * {@code log2(table.length)-1} additional cells are scanned.
         * When called from insertions, this parameter is the number
         * of elements, but when from replaceStaleEntry, it is the
         * table length. (Note: all this could be changed to be either
         * more or less aggressive by weighting n instead of just
         * using straight log n. But this version is simple, fast, and
         * seems to work well.)
         *
         * @return true if any stale entries have been removed.
         */
        //执行table数组长度的对数次数的expungeStaleEntry扫描
        private boolean cleanSomeSlots(int i, int n) {
            boolean removed = false;
            Entry[] tab = table;
            int len = tab.length;
            do {
                i = nextIndex(i, len);
                Entry e = tab[i];
                if (e != null && e.get() == null) {
                    n = len;
                    removed = true;
                    i = expungeStaleEntry(i);
                }
            } while ( (n >>>= 1) != 0);
            return removed;
        }

至此ThreadLocal的源码基本分析完毕,每个Thread自己维持自己的ThreadLocalMap,可以有多个ThreadLocal变量,并且都访问属于自己的ThreadLocalMap,有对应值的返回值,没有的通过initialValue返回null,多线程之间互相不干扰对方的数据。

你可能感兴趣的:(Android: 理解ThreadLocal的工作原理)