- LLM 词汇表
落难Coder
LLMsNLP大语言模型大模型llama人工智能
Contextwindow“上下文窗口”是指语言模型在生成新文本时能够回溯和参考的文本量。这不同于语言模型训练时所使用的大量数据集,而是代表了模型的“工作记忆”。较大的上下文窗口可以让模型理解和响应更复杂和更长的提示,而较小的上下文窗口可能会限制模型处理较长提示或在长时间对话中保持连贯性的能力。Fine-tuning微调是使用额外的数据进一步训练预训练语言模型的过程。这使得模型开始表示和模仿微调数
- 【有啥问啥】刷爆各大榜单的Reflection 70B模型背后的错误自我纠正(Reflection-Tuning)技术解析:一种革新AI模型的方法
Chauvin912
大模型行业调研人工智能算法
刷爆各大榜单的Reflection70B模型背后的错误自我纠正(Reflection-Tuning)技术解析:一种革新AI模型的方法在快速发展的AI领域,尤其是大型语言模型(LLM)的竞争中,错误自我纠正技术(Reflection-Tuning)正逐步成为提升模型性能的关键突破。该技术通过赋予模型自我检测和纠正错误的能力,显著提高了输出的准确性和可靠性。本文将深入解析Reflection-Tunn
- 大模型多机多卡脚本实例 - 增量预训练 -accelerate和deepspeed命令多机多卡训练有什么不同
AI生成曾小健
大模型/增量预训练CPT深度学习python机器学习
第一步,同步权重ls-l/data/xxx/gpu008/MoeRemake/train/etuning/LLaMA-Factory2/models/xxx-Base-10B-200k-Llama第二步,同步环境:./scp_batch.sh"/data/xxx/miniconda3/envs/etuning4/""/data/vayu/miniconda3/envs/etuning4/"gpu0
- 超越传统:Reflection 70B如何革新AI语言处理
黑金IT
人工智能AI编程
Reflection70B:AI语言模型的新里程碑AI领域迎来了革命性的变革,HyperWrite公司推出的开源AI大模型Reflection70B,以其卓越的性能在多个基准测试中超越了GPT-4o和Llama3.1。这款基于Meta的Llama3.170BInstruct构建的模型,采用了先进的“Reflection-Tuning”技术,能够在最终确定回答前检测并纠正自身的错误,显著提高了输出的
- mysql5.7 myisam 优化_MySQL5.7优化配置参数
weixin_39866974
mysql5.7myisam优化
#Otherdefaulttuningvalues#MySQLServerInstanceConfigurationFile#----------------------------------------------------------------------#GeneratedbytheMySQLServerInstanceConfigurationWizard###Installatio
- 大模型推理框架 RTP-LLM 架构解析
阿里技术
架构LLM推理阿里巴巴RPT
RTP-LLM是阿里巴巴智能引擎团队推出的大模型推理框架,支持了包括淘宝、天猫、闲鱼、菜鸟、高德、饿了么、AE、Lazada等多个业务的大模型推理场景。RTP-LLM与当前广泛使用的多种主流模型兼容,使用高性能的CUDAkernel,包括PagedAttention、FlashAttention、FlashDecoding等,支持多模态、LoRA、P-Tuning、以及WeightOnly动态量化
- LLM系列(3):探索大模型RLHF优化之道:DeepSpeed-Chat超快速入门,对齐训练精度提升一步到位
汀、人工智能
LLM工业级落地实践人工智能promptLLM自然语言处理大模型RLHFDeepSpeed
LLM系列(3):探索大模型RLHF优化之道:DeepSpeed-Chat超快速入门,对齐训练精度提升一步到位随着ChatGPT的惊艳表现,各类大模型产品如雨后春笋丛出不穷。作为有一定算法能力的同学一定会想是否可以自己在有限的物理条件下去定制化自己的大模型。学术界对此也进行了一定的研究,如PromptTuning的技术等(不调试原始大模型,只调试相关的Prompt)。最近微软做了一个Deepspe
- 百篇论文博文导航AI工程之路:FT、KG、RAG与Agent技术全方位探索
汀、人工智能
AIAgent人工智能深度学习机器学习自然语言处理大模型AgentRAG
百篇论文博文导航AI工程之路:FT、KG、RAG与Agent技术全方位探索1.FTScalingDowntoScaleUp:AGuidetoParameter-EfficientFine-Tuning:https://arxiv.org/abs/2303.15647TowardsaUnifiedViewofParameter-EfficientTransferLearning:https://ar
- 【大模型】Agent基础知识
idiotyi
大模型人工智能自然语言处理
目录1.基本框架2.常见推理模式2.1ReAct:SynergizingReasoningandActinginLanguageModels2.2Reflection2.3LATS:LanguageAgentsTreeSearch3.微调3.1全模型微调(FullModelFine-Tuning)3.2冻结部分层微调(Layer-wiseFine-Tuning)3.3适配器(Adapters)3.
- 深度解析:大模型微调的原理、应用与实践
longfei.li
人工智能神经网络
引言最近在公司落地AI产品的过程中,与团队小伙伴深入探讨和测试了大模型微调,同时也跟多个业内专家进行了交流和学习。相信很多人在实际落地大模型应用的时候都会有个疑问:到底要不要做微调模型?我的结论是在实际落地的过程中绝大多数场景是不需要做的,所以今天主要跟大家分享一下什么是Fine-tuning、Fine-tuning的原理以及Fine-tuning的应用,以帮助大家在工作中更好的理解大模型微调。什
- CLIP-Adapter: Better Vision-Language Models with Feature Adapters
Tsukinousag
对比语言图像预训练(CLIP)虽然prompt-tuning用于textualinputs,但是建议CLIPAdapter在视觉或语言分支上使用功能适配器进行fine-tuneCLIPAdapter采用了一个额外的瓶颈层来学习新的特征,并将剩余的特征与原始的预训练特征进行混合。为了更好地适应vision语言模型,使用功能适配器,而不是快速调整1.ClassifierWeightGeneration
- MasaCtrl:Tuning-free mutual self-attention control for consistent image synthesis and editing
Kun Li
图像视频生成大模型stablediffusion
https://github.com/TencentARC/MasaCtrl/issues/13https://github.com/TencentARC/MasaCtrl/issues/13QuestionaboutMask·Issue#31·TencentARC/MasaCtrl·GitHub
- Code Llama: Open Foundation Models for Code论文阅读
yang_daxia
大模型llamacodellama
整体介绍CodeLlama发布了3款模型,包括基础模型、Python专有模型和指令跟随模型,参数量分别为7B、13B、34B和70B。这些模型在长达16ktokens的序列上训练。都是基于Llama2。作者针对infilling(FIM)、长上下文、指令专门做了微调long-contextfine-tuning(LCFT).codellama细节CodeLlama模型家族初始化:所有CodeLla
- 大模型18:微调大模型方法PEFT(LoRA等) — 训练 “ChatGLM2“ 项目
bluewelkin
大模型
微调大模型的方法之一是PEFT(Parameter-EfficientFine-Tuning),其中包括LoRA(Low-RankAdaptation)等技术。PEFT方法能够在不显著增加计算资源消耗的情况下,微调大模型,从而适应特定任务。这种方法特别适用于像“ChatGLM2”这样的预训练大模型。什么是PEFT(Parameter-EfficientFine-Tuning)?PEFT是一种优化微
- 大模型19:微调大模型方法
bluewelkin
大模型
有监督微调(SFT)、奖励模型(RM)训练,以及基于人类反馈的强化学习(RLHF)训练1.有监督微调(SFT-SupervisedFine-Tuning)数据处理数据收集:首先,需要收集大量的对话数据。这些数据通常包括人工标注的问答对,或者从已有的高质量对话系统中获取的数据集。数据预处理:对收集的数据进行清洗、标注和格式化。预处理包括移除噪音数据、分词、生成模型输入输出格式等。模型训练模型初始化:
- 大模型微调方法总结:LoRA、Adapter、Prefix-tuning、P-tuning、Prompt-tuning
百度_开发者中心
prompt人工智能大模型
随着深度学习技术的不断发展,大型预训练模型已成为许多任务的重要工具。然而,微调(finetuning)这些大模型以适应特定任务是一个复杂且计算密集型的过程。本文将重点介绍五种不同的微调方法:LoRA、Adapter、Prefix-tuning、P-tuning和Prompt-tuning,并对它们进行总结。LoRA(LearnedRepresentationsforFinetuning)LoRA是
- Prompt-Tuning:大模型微调技术
百度_开发者中心
prompt自然语言处理大模型
随着深度学习技术的不断发展,大模型(如GPT、BERT等)在各种自然语言处理(NLP)任务中取得了显著的成功。然而,训练和部署大模型需要大量的计算资源和时间,这限制了其在一些资源有限场景中的应用。为了解决这个问题,研究人员提出了各种大模型微调技术,以减少模型的大小和计算复杂度,同时保持模型的性能。本文将重点介绍一些常见的大模型微调技术,包括Adapter-Tuning、Prefix-Tuning、
- 大模型微调技术(Adapter-Tuning、Prefix-Tuning、Prompt-Tuning(P-Tuning)、P-Tuning v2、LoRA)_adapter微调 p tuning
Cc不爱吃洋葱
prompt
2022年11月30日,ChatGPT发布至今,国内外不断涌现出了不少大模型,呈现“百模大战”的景象,比如ChatGLM-6B、LLAMA、Alpaca等模型及在此模型基础上进一步开发的特定领域的大模型。今年3月15日,GPT-4发布后,也出现了一些多模态的大模型,比如百度的文心一言、讯飞星火认知大模型等等。要想训练一个针对特定领域的大模型,如果采用全量参数微调(FullParameterFutu
- Rocksdb Tuning
MOONICK
数据库
Rocksdb配置选项尤其繁多,想要获得真正的高性能,需要进行详细的调优,这是项复杂的工作,需要在实践中积累经验:https://www.jianshu.com/p/8e0018b6a8b6https://cloud.tencent.com/developer/article/2329992调优RocksDB通常就是在三个amplification之间做取舍:Writeamplification-
- 大模型应用中什么是SFT(监督微调)?
Chauvin912
大模型语言模型深度学习算法
大模型应用中什么是SFT(监督微调)?一、SFT的基本概念监督微调(SupervisedFine-Tuning,SFT)是对已经预训练的模型进行特定任务的训练,以提高其在该任务上的表现。预训练模型通常在大量通用数据上进行训练,学到广泛的语言知识和特征。在SFT过程中,利用特定任务的数据,对模型进行进一步调整,使其更适合该任务。二、SFT的原理SFT的过程可以分为以下几个步骤:预训练模型:在大规模通
- AI推介-大语言模型LLMs论文速览(arXiv方向):2024.02.20-2024.02.25
小小帅AIGC
LLMs论文时报人工智能语言模型深度学习LLM大语言模型论文推送
论文目录~1.Zero-shotcross-lingualtransferininstructiontuningoflargelanguagemodel2.ScalingEfficientLLMs3.LLM-DA:DataAugmentationviaLargeLanguageModelsforFew-ShotNamedEntityRecognition4.WhoseLLMisitAnyway?L
- AI推介-大语言模型LLMs论文速览(arXiv方向):2024.02.25-2024.03.01
小小帅AIGC
LLMs论文时报人工智能语言模型自然语言处理LLM大语言模型深度学习论文推送
论文目录~1.ArithmeticControlofLLMsforDiverseUserPreferences:DirectionalPreferenceAlignmentwithMulti-ObjectiveRewards2.KeepingLLMsAlignedAfterFine-tuning:TheCrucialRoleofPromptTemplates3.Meta-TaskPrompting
- 大模型训练——PEFT与LORA介绍
MarkHD
人工智能深度学习机器学习
大模型训练中的PEFT(Parameter-EfficientFine-Tuning)与LoRA(Low-RankAdaptation)是两种重要的技术,它们在大型预训练模型的应用中发挥着重要作用。首先,让我们来了解一下PEFT。PEFT是一种参数高效的微调技术,由Huggingface发布。这种方法的核心思想是仅微调少量(额外)模型参数,同时冻结预训练LLM的大部分参数。这样做的好处是大大降低了
- 学习笔记:使用 Amazon Bedrock 进行图像生成
AmazonBedrock全新发布在2023年的亚马逊云科技re:Invent全球云计算大会上,最令人瞩目的一项更新莫过于AmazonBedrock的全新升级。亚马逊云科技此次为其大模型托管服务引入了Fine-tuning、Agents、KnowledgeBases和Guardrails等一系列创新功能。这些功能的加入意味着客户现在能以更加高效、智能和安全的方式构建各种应用,标志着亚马逊云科技在推
- 预训练和微调在迁移学习中的作用
一条小小yu
迁移学习人工智能机器学习
在机器学习和深度学习中,"pre-training"(预训练)和"fine-tuning"(微调)是两个常见且重要的概念,它们通常在迁移学习场景中使用,以提高模型在特定任务上的性能。预训练(Pre-training)预训练是指在一个大型且通常与目标任务相关但不完全相同的数据集上训练模型的过程。这个阶段的目的是让模型学习到一些通用的特征或知识,这些特征或知识可以帮助模型在后续的特定任务上表现更好。预
- 大模型微调大杂烩知识总结
lichunericli
LLM人工智能语言模型
1.前缀微调(Prefix-Tuning)前缀微调是一种针对预训练模型的微调方法,通过在模型输入前添加特定任务相关的连续前缀表示,从而引导模型生成适应特定任务的输出。在微调过程中,只更新前缀表示的参数,而预训练模型的参数保持不变。微调方法:首先,为每个任务设计一个可学习的前缀表示。然后,将这个前缀表示与输入序列进行拼接,输入到预训练模型中。最后,通过优化前缀表示的参数,使得模型能够生成适应特定任务
- Prompt Tuning:深度解读一种新的微调范式
lichunericli
LLM人工智能语言模型prompt
阅读该博客,您将系统地掌握如下知识点:什么是预训练语言模型?什么是prompt?为什么要引入prompt?相比传统fine-tuning有什么优势?自20年底开始,prompt的发展历程,哪些经典的代表方法?面向不同种类NLP任务,prompt如何选择和设计?面向超大规模模型,如何借助prompt进行参数有效性训练?面向GPT3,什么是In-ContextLearning?什么是Chain-Of-
- ACK Timeout 相关论文
小超超爱超超
论文中提到了ACKTimeout《AReal-TimeUpdatingAlgorithmofRTS-CTSThresholdtoEnhanceEDCAMACPerformanceinIEEE802.11eWirelessLANs》Timeout论文中《RTSThresholdSelf-TuningAlgorithmBasedonDelayAnalysison802.11DCF》提到冲突时间:
- 大模型推理优化实践:KV cache 复用与投机采样
阿里技术
RTP-LLM大模型KVcache推理优化投机采样
作者:米基一、背景RTP-LLM是阿里巴巴大模型预测团队开发的大模型推理加速引擎,作为一个高性能的大模型推理解决方案,它已被广泛应用于阿里内部。该引擎与当前广泛使用的多种主流模型兼容,并通过采用高性能的CUDA算子来实现了如PagedAttention和ContinuousBatching等多项优化措施。RTP-LLM还支持包括多模态、LoRA、P-Tuning、以及WeightOnly动态量化等
- 大语言模型ChatGLM + P-Tuning微调实践
North_D
AI人工智能人工智能自然语言处理chatgptnlptransformer深度学习机器学习
大语言模型ChatGLM+P-Tuning微调实践文章目录大语言模型ChatGLM+P-Tuning微调实践LLM微调基础本次实践环境说明ChatGLM部署以及激活conda环境安装依赖禁用W&B训练数据集、测试数据集准备微调参数调整(train.sh\evaluate.sh)参数说明备查训练推理验证可能会遇到的问题及解决LLM微调基础LLM微调可以对原有预模型进行专业领域知识的训练,相关领域知识
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST