风格迁移
- 现成工具:tensorflow hub
- 手工实现风格迁移
- 我们对风格有失恭敬
神经风格转换是深度学习领域中一个很有趣的技术。它可以改变图像的风格。
如下图所示,根据一张内容图片和一张风格图片,生成一张新图片,这张图片结合了第一张图像的内容和第二张图像的风格。
在 tensorflow hub 中已经有现成的风格转换模型可以被免费调用了。
除了风格转换模型外,hub 中还包含了很多常见的模型,很强大很可怕!!
import os
import tensorflow as tf
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'
import IPython.display as display
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['figure.figsize'] = (12, 12)
mpl.rcParams['axes.grid'] = False
import numpy as np
import PIL.Image
import time
import functools
def load_img(path_to_img):
max_dim = 512
img = tf.io.read_file(path_to_img)
img = tf.image.decode_image(img, channels=3)
img = tf.image.convert_image_dtype(img, tf.float32)
shape = tf.cast(tf.shape(img)[:-1], tf.float32)
long_dim = max(shape)
scale = max_dim / long_dim
new_shape = tf.cast(shape * scale, tf.int32)
img = tf.image.resize(img, new_shape)
img = img[tf.newaxis, :]
return img
def imshow(image, title=None):
if len(image.shape) > 3:
image = tf.squeeze(image, axis=0)
plt.imshow(image)
if title:
plt.title(title)
content_path = tf.keras.utils.get_file('ebcf732904a54911be5967c5b072a8e4.jpeg', 'https://img-blog.csdnimg.cn/ebcf732904a54911be5967c5b072a8e4.jpg')
style_path = tf.keras.utils.get_file('b275d4b95c33488e93a829bb1e7da6c9.jpeg', 'https://img-blog.csdnimg.cn/b275d4b95c33488e93a829bb1e7da6c9.jpg')
content_image = load_img(content_path)
style_image = load_img(style_path)
plt.subplot(1, 2, 1)
imshow(content_image, 'Content Image')
plt.subplot(1, 2, 2)
imshow(style_image, 'Style Image')
def tensor_to_image(tensor):
tensor = tensor * 255
tensor = np.array(tensor, dtype=np.uint8)
if np.ndim(tensor) > 3:
assert tensor.shape[0] == 1
tensor = tensor[0]
return PIL.Image.fromarray(tensor)
import tensorflow_hub as hub
hub_model = hub.load('https://hub.tensorflow.google.cn/google/magenta/arbitrary-image-stylization-v1-256/2')
stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0]
tensor_to_image(stylized_image)
迁移学习其实就是利用已经训练好的模型来实现另一个任务,我们借用一个训练好了的 VGG-19 模型。
vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
content_layers = ['block5_conv2']
style_layers = ['block1_conv1',
'block2_conv1',
'block3_conv1',
'block4_conv1',
'block5_conv1']
num_content_layers = len(content_layers)
num_style_layers = len(style_layers)
def vgg_layers(layer_names):
vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
vgg.trainable = False
outputs = [vgg.get_layer(name).output for name in layer_names]
model = tf.keras.Model([vgg.input], outputs)
return model
def gram_matrix(input_tensor):
result = tf.linalg.einsum('bijc,bijd->bcd', input_tensor, input_tensor)
input_shape = tf.shape(input_tensor)
num_locations = tf.cast(input_shape[1]*input_shape[2], tf.float32)
return result/(num_locations)
class StyleContentModel(tf.keras.models.Model):
def __init__(self, style_layers, content_layers):
super(StyleContentModel, self).__init__()
self.vgg = vgg_layers(style_layers + content_layers)
self.style_layers = style_layers
self.content_layers = content_layers
self.num_style_layers = len(style_layers)
self.vgg.trainable = False
def call(self, inputs):
inputs = inputs*255.0
preprocessed_input = tf.keras.applications.vgg19.preprocess_input(inputs)
outputs = self.vgg(preprocessed_input)
style_outputs, content_outputs = (outputs[:self.num_style_layers],
outputs[self.num_style_layers:])
style_outputs = [gram_matrix(style_output)
for style_output in style_outputs]
content_dict = {
content_name: value
for content_name, value
in zip(self.content_layers, content_outputs)}
style_dict = {
style_name: value
for style_name, value
in zip(self.style_layers, style_outputs)}
return {
'content': content_dict, 'style': style_dict}
extractor = StyleContentModel(style_layers, content_layers)
style_targets = extractor(style_image)['style']
content_targets = extractor(content_image)['content']
image = tf.Variable(content_image)
def clip_0_1(image):
return tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0)
opt = tf.optimizers.Adam(learning_rate=0.02, beta_1=0.99, epsilon=1e-1)
style_weight = 1e-2
content_weight = 1e4
def style_content_loss(outputs):
style_outputs = outputs['style']
content_outputs = outputs['content']
style_loss = tf.add_n([tf.reduce_mean((style_outputs[name]-style_targets[name])**2)
for name in style_outputs.keys()])
style_loss *= style_weight / num_style_layers
content_loss = tf.add_n([tf.reduce_mean((content_outputs[name]-content_targets[name])**2)
for name in content_outputs.keys()])
content_loss *= content_weight / num_content_layers
loss = style_loss + content_loss
return loss
def train_step(image):
with tf.GradientTape() as tape:
outputs = extractor(image)
loss = style_content_loss(outputs)
grad = tape.gradient(loss, image)
opt.apply_gradients([(grad, image)])
image.assign(clip_0_1(image))
import time
start = time.time()
epochs = 10
steps_per_epoch = 100
# 只训练了三步,图片风格会稍稍变化
train_step(image)
train_step(image)
train_step(image)
tensor_to_image(image)
'''
真正训练的话,是要很多步的。会花很长时间,以下代码电脑配置不好的可能要花几个小时
step = 0
for n in range(epochs):
for m in range(steps_per_epoch):
step += 1
train_step(image)
print(".", end='', flush=True)
display.clear_output(wait=True)
display.display(tensor_to_image(image))
print("Train step: {}".format(step))
end = time.time()
print("Total time: {:.1f}".format(end-start))
'''
输出:
风格,是一种非常人性化的东西,它的反义词是机械化。
同样一个笑话,或者一句特别经典的话,奥巴马说一遍可能效果就非常好,而你如果接下来照着他学一遍,那就完全不好使 —— 你就是机械化的模仿,你没有自己的个人风格。
说服别人,不能用写学术论文的方法,期待用一大堆数字图表去碾压别人,那样别人只会反感,当你是个机器人。
没人愿意听机器人的,人们喜欢有风格的人。
我喜欢你的风格 — 这简直就是对人最高级的评价。
得有自己的风格,甚至哲学。
任何时候都要真诚,不要模仿任何人,永远做最真实的自己 — 而且你也不必为此道歉。
如果你的真实自我是一个很怪异的人,那你就做这样一个很怪异的人。
我所喜欢的风格 — 惜字如金,一语惊人。
能打动别人,说服别人,的确是个本事。但是我们周围人写的文章里诗歌实在太多,中文世界里有太多感情充沛气势磅礴,而又言之无物的东西。
含金量高的书,第一言之有物,传达了独特的思想或感受,第二文字凝练,赋予了这些思想或感受以最简洁的形式。
所谓文字凝练,倒不在于刻意少写,而在于不管写多写少,都力求货真价实(站得住脚,而不是好看)。
这一要求见之于修辞,就是剪除一切可有可无的词句,达于文风的简洁。
由于惜墨如金,所以果然就落笔成金,字字都掷地有声。