- 概率图模型(PGM)综述
医学影像处理
概率图模型概率图模型综述
RefLink:http://www.sigvc.org/bbs/thread-728-1-1.htmlGraphicalModel的基本类型基本的GraphicalModel可以大致分为两个类别:贝叶斯网络(BayesianNetwork)和马尔可夫随机场(MarkovRandomField)。它们的主要区别在于采用不同类型的图来表达变量之间的关系:贝叶斯网络采用有向无环图(DirectedAc
- 【机器学习】朴素贝叶斯网络的基本概念以及朴素贝叶斯网络在python中的实例
Lossya
机器学习python人工智能算法朴素贝叶斯
引言文章目录引言一、朴素贝叶斯网络1.1基本概念1.1.1节点1.1.2边(Edges)1.1.3条件独立性1.2特点1.2.1结构简单1.2.2易于理解和实现1.2.3计算效率高1.3应用1.4数学表示1.5局限性二、朴素贝叶斯网络在python中的实例2.1实例背景2.2实现步骤2.3python代码2.4代码解释三、概率推断在医疗领域中的使用3.1概率推断在医疗领域的使用3.2自动化推断的优
- 机器学习_15_贝叶斯算法
少云清
机器学习机器学习算法概率论贝叶斯算法
文章目录1贝叶斯定理相关公式2朴素贝叶斯算法2.1朴素贝叶斯算法推导2.2朴素贝叶斯算法流程3高斯朴素贝叶斯4伯努利朴素贝叶斯5多项式朴素贝叶斯6贝叶斯网络6.1最简单的一个贝叶斯网络6.2全连接贝叶斯网络6.3“正常”贝叶斯网络6.4实际贝叶斯网络:判断是否下雨6.5贝叶斯网络判定条件独立-016.6贝叶斯网络判定条件独立-026.7贝叶斯网络判定条件独立-031贝叶斯定理相关公式**先验概率P
- 《机器人SLAM导航核心技术与实战》第1季:第7章_SLAM中的数学基础
小虎哥哥爱学习
机器人人工智能自动驾驶计算机视觉概率论
视频讲解【第1季】7.第7章_SLAM中的数学基础-视频讲解【第1季】7.1.第7章_SLAM中的数学基础_SLAM发展简史-视频讲解【第1季】7.2.第7章_SLAM中的数学基础_SLAM中的概率理论-视频讲解【第1季】7.3.第7章_SLAM中的数学基础_估计理论-视频讲解【第1季】7.4.第7章_SLAM中的数学基础_基于贝叶斯网络的状态估计-视频讲解【第1季】7.5.第7章_SLAM中的数
- 经典分类CNN模型系列其一:Alexnet
manofmountain
介绍传统的机器学习分类模型像SVM,逻辑回归,决策树,甚至贝叶斯网络等在CNN推动的深度学习近几年大肆发展之后,都已纷纷被秒成了渣。这一切都始于2012年。Alexnet的横空出世及其在ILSVRC2012Imagenet数据集分类大赛中表现出的摧枯拉朽的领先正式宣告了深度学习纪元的开启。其实CNN模型并非啥新玩意,早在1997年Yang,Lecun就有实现过一个CNN模型并将之用于类似于MNST
- 书生·浦语大模型实战1
__如果
人工智能
书生·浦语大模型全链路开源体系视频链接:书生·浦语大模型全链路开源体系_哔哩哔哩_bilibili大模型之所以能收到这么高的关注度,一个重要原因是大模型是发展通用人工智能的重要途径深度信念网络:(1)又被称为贝叶斯网络,是一种有向无环图(2)可以在任意叶子节点生成无偏的样本集合(3)通过不断积累RBM(受限玻尔兹曼机)形成。每当一个RBM被训练完成时,其隐藏单元又可以作为后一层RBM的输入(4)D
- .【机器学习】隐马尔可夫模型(Hidden Markov Model,HMM)
十年一梦实验室
机器学习人工智能
概率图模型是一种用图形表示概率分布和条件依赖关系的数学模型。概率图模型可以分为两大类:有向图模型和无向图模型。有向图模型也叫贝叶斯网络,它用有向无环图表示变量之间的因果关系。无向图模型也叫马尔可夫网络,它用无向图表示变量之间的相关关系。概率图模型可以用于机器学习,人工智能,自然语言处理,计算机视觉,生物信息学等领域。一、马尔科夫模型随机过程马尔科夫过程马尔科夫链状态转移矩阵通过训练样本学习得到,采
- 基于贝叶斯决策理论的分类器
CHENG-HQ
机器学习机器学习贝叶斯分类器参数估计
基于贝叶斯决策理论的分类器基于贝叶斯决策理论的分类器贝叶斯决策理论1如何衡量分类好坏参数估计1极大似然估计2最大后验概率估计3最大熵估计4非参数估计贝叶斯分类器在现实中的应用1垃圾邮件分类2贝叶斯网络参考文献首先,我们知道机器学习分为监督学习和非监督学习两大类。在监督学习中,我们主要面对的是拟合问题(regression)和分类问题(classification)。在本节中,我们先来了解一下如何使
- 贝叶斯推断:细谈贝叶斯变分和贝叶斯网络
一碗姜汤
贝叶斯推断人工智能机器学习
1.贝叶斯推断统计推断这件事大家并不陌生,如果有一些采样数据,我们就可以去建立模型,建立模型之后,我们通过对这个模型的分析会得到一些结论,不管我们得到的结论是什么样的结论,我们都可以称之为是某种推断。对于数据和未知参数,频率学派会建立起关于数据的模型,模型当中会有我们的参数,如果我们把参数看成是确定的未知量。我们就可以用频率学派的观点来进行推断了。此时数据是随机量,参数是确定量,我们用数据来估计参
- 机器学习-贝叶斯网络
alstonlou
机器学习人工智能
贝叶斯分类器贝叶斯网络是通过假设数据的先验分布,利用贝叶斯公式计算后验概率,将样本根据概率进行分类。常用贝叶斯网络:1.朴素贝叶斯分类器;2.半朴素贝叶斯分类器;3.贝叶斯网;4.EM算法朴素贝叶斯分类器:纯粹贝叶斯公式进行后验分布计算,从而完成对样本的分类半朴素贝叶斯分类器:为了降低贝叶斯公式中估计后验概率的困难,朴素贝叶斯分类器中采用的是属性条件独立的假设,但是在现实中往往很难成立。而半朴素贝
- 机器学习的算法简单介绍-朴素贝叶斯算法
Algorithm_Engineer_
机器学习机器学习算法人工智能
朴素贝叶斯网络(NaiveBayesNetwork)与贝叶斯网络(BayesianNetwork)有一些不同之处,让我们来澄清一下这两个概念。贝叶斯网络(BayesianNetwork):贝叶斯网络是一种用于建模概率关系的图模型。它使用有向无环图(DAG)来表示一组变量之间的依赖关系,并通过概率分布来量化这些依赖关系。节点表示变量,边表示变量之间的依赖关系。每个节点都与其父节点相关,而给定父节点的
- 【读书笔记】网空态势感知理论与模型(三)
xian_wwq
安全网空态势
7.3方向3的研究成果(态势知识融合)7.3.1使用贝叶斯网络实现网空态势融合提出了两种使用BN的网空态势感知的方法:(1)构建跨层的贝叶斯网络,推断出云环境企业“孤岛”之间的隐蔽连接“桥梁”;在云环境中实现网空态势感知,是一个非常重要的新兴研究领域。在孤立的企业网络“岛屿”之间可能会构建隐蔽连接的“桥梁”。通过隐性的“桥梁”,原先限制在企业网络内部的攻击路径,能够跨越至云环境中的另一个企业的网络
- 机器学习 (第9章 概率图模型)
komjay
机器学习人工智能
一、学习目标1.学习概率图模型中两种重要的模型:贝叶斯网络和马尔科夫随机场2.学习使用概率图模型去进行实际问题的学习与推断3.学习近似推断二、贝叶斯网络概率图模型基于图,而图这种数据结果分为两种:有向图和无向图,针对有向(无环)图结构,实现的是贝叶斯网络,针对无向图,则为马尔可夫随机场。1.有向无环图根据图中每个结点不同,可提取出不同的相关结点,如以x3为例2.联合概率分布我们之所以搞出这么一个图
- 输出笔记:贝叶斯定理Python实现+个人理解
不想放开的骆驼
写这篇笔记的来源:image昨天晚上在朋友圈刷到了朋友用R画的贝叶斯网络(也就是上图,图片已拿到授权。选的节点很多,个人觉得像宇宙,交叉的点不断的向外边发送信号,还怪好看的)。这时想起了,自己收藏夹有贝叶斯定理的解析(以前只是收藏了,没看,逃。)然后用Python实现一个简单的贝叶斯定理的脚本。也是为了验证下是否理解了贝叶斯定理。贝叶斯定理介绍:Steve很害羞而且性格孤僻,虽然乐于助人,但却对周
- 贝叶斯参数学习
温稳稳不稳
贝叶斯网络概率论
贝叶斯网络的参数学习1导语hellohello,大家好在之前的推文中,我们见过完整的贝叶斯网络;也展示了在有一定证据的情况下,如何使用贝叶斯网络进行推断但在手头没有贝叶斯网络的时候,如何通过手头的数据构建一个贝叶斯网络呢?1.2相关概念1.2.1贝叶斯网络参数学习问题分类回想:贝叶斯网络=有向图+概率关于贝叶斯网络的学习,主要分为以下5种情况[1]:已知:有向图+完整数据待求:概率已知:完整数据待
- R语言贝叶斯网络模型、INLA下的贝叶斯回归、R语言现代贝叶斯统计学方法、R语言混合效应(多水平/层次/嵌套)模型
WangYan2022
R语言数据语言贝叶斯R语言现代贝叶斯统计学INLA混合效应模型
目录㈠基于R语言的贝叶斯网络模型的实践技术应用㈡R语言贝叶斯方法在生态环境领域中的高阶技术应用㈢基于R语言贝叶斯进阶:INLA下的贝叶斯回归、生存分析、随机游走、广义可加模型、极端数据的贝叶斯分析㈣基于R语言的现代贝叶斯统计学方法(贝叶斯参数估计、贝叶斯回归、贝叶斯计算)实践㈤R语言混合效应(多水平/层次/嵌套)模型及贝叶斯实现更多应用㈠基于R语言的贝叶斯网络模型的实践技术应用贝叶斯网络不但能够统
- 4--贝叶斯 聚类算法
pepsi_w
周报算法聚类机器学习
本周学习内容:学习贝叶斯网相关知识学习集成学习部分内容学习聚类任务及其相关算法1贝叶斯网半朴素贝叶斯中规定每一个特征可以依赖于另外一个特征,贝叶斯网络在半朴素贝叶斯的基础上更进一步,认为每个特征都可以依赖于另外多个特征。贝叶斯网络实际上是一个有向无环图,图中包含贝叶斯网络的结构和参数,带有方向的边从父特征出发,指向子特征,代表子特征依赖于父特征。贝叶斯网中三个变量之间的典型依赖关系如图1所示:图1
- 机器学习算法基础——分类模型(二)
三翼鸟数字化技术团队
机器学习算法分类人工智能
引言上回我们讨论了机器学习中的三种重要的分类模型:Logistic回归、朴素贝叶斯、贝叶斯网络,并对这三种模型的数学推导和实例实现有了一个深刻的认识。今天我们继续介绍另外两种基础的分类算法:决策树和随机森林,本期分享的主要任务就是要讨论决策树的生成方法,包括ID3算法、C4.5算法和CART算法,并通过清晰易懂的应用实例解释说明算法的实现细节。相信有了决策树基础,后面再进行随机森林的构建就会变得非
- 03-IF6+:纯生信基于网络互作结合基因表达谱、拷贝数变异数据鉴定多发性骨髓瘤标志物
AAA肿瘤信息学王协
MM:多发性骨髓瘤(MultipleMyeloma)CNV:拷贝数改变(copynumbervariation)MMRC:多发性骨髓瘤研究组织(theMultipleMyelomaResearchConsortium)M3CN:多发性骨髓瘤分子关系网络(multiplemyelomamolecularcausalnetwork)RIMBANet:重构整合的分子贝叶斯网络(Reconstructin
- 【机器学习】11、贝叶斯网络
呆呆的猫
机器学习经典算法
文章目录一、贝叶斯网络是什么二、朴素贝叶斯三、贝叶斯网络的建立一、贝叶斯网络是什么贝叶斯网络的思考:原本的问题:给定一组样本D,求得在这些样本中出现某个结论A1,A2,...,AnA_1,A_2,...,A_nA1,A2,...,An出现的概率,也就是P(Ai∣D)P(A_i|D)P(Ai∣D),表示求得给定数据后,哪个结论出现的概率最大。问题转化:maxP(Ai∣D)=maxP(D∣Ai)P(A
- 机器学习入门六(贝叶斯网络数据分类)
朱笨笨
机器学习入门机器学习分类人工智能
老师要求做一个因果分析,没有思路。目前作者了解到了辛普森悖论,所以想找一个比较合适的方法做一下因果分析,于是找到了《Python机器学习算法与实战》这本书看了一眼里面的内容,偷学了一手贝叶斯网络书数据分类方法哈哈哈。文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言贝叶斯网络处理一些分类问题,同时尝试用贝叶斯网络做因果分析。本文采用的数据集仍未泰坦尼克号幸存者数据集。一
- 贝叶斯网络 (人工智能期末复习)
倒杯Whisky
人工智能人工智能贝叶斯网络D分离法条件概率表贝叶斯网络独立性
文章目录贝叶斯网络(概率图模型)定义主要考点例题-要求画出贝叶斯网络图-计算各节点的条件概率表-计算概率-分析独立性贝叶斯网络(概率图模型)定义一种简单的用于表示变量之间条件独立性的有向无环图(DAG)。主要考点给出一定表述,要求画出贝叶斯网络图;给出每个节点的条件概率表;使用贝叶斯网络计算概率;分析贝叶斯网络的独立性;例题-要求画出贝叶斯网络图臭鸡蛋(E)或灾难后动物的尸体(M)都会发出一种奇怪
- 贝叶斯网络在R语言中的应用
CodeMaven
r语言开发语言R语言
贝叶斯网络是一种概率图模型,用于建模变量之间的依赖关系。它在许多领域都有广泛的应用,包括机器学习、人工智能和统计分析等。本文将介绍如何在R语言中使用贝叶斯网络进行建模和推断,并提供相应的源代码示例。首先,我们需要安装并加载相关的R包。在R中,有几个包可以用于构建和分析贝叶斯网络,如bnlearn和gRain等。这里我们以bnlearn包为例进行说明。#安装bnlearn包install.packa
- 【深度学习】概率图模型(二)有向图模型详解(条件独立性、局部马尔可夫性及其证明)
QomolangmaH
深度学习人工智能贝叶斯网络局部马尔可夫性条件独立性概率图
文章目录一、有向图模型1.贝叶斯网络的定义2.条件独立性及其证明a.间接因果关系X3→X2→X1X_3\rightarrowX_2\rightarrowX_1X3→X2→X1b.间接果因关系X1→X2→X3X_1\rightarrowX_2\rightarrowX_3X1→X2→X3c.共因关系X1←X2→X3X_1\leftarrowX_2\rightarrowX_3X1←X2→X3d.共果关系
- 【深度学习】概率图模型(一)概率图模型理论简介
QomolangmaH
深度学习深度学习概率论人工智能概率图模型贝叶斯网络马尔可夫随机场
文章目录一、概率图模型1.联合概率表2.条件独立性假设3.三个基本问题二、模型表示1.有向图模型(贝叶斯网络)2.无向图模型(马尔可夫网络)三、学习四、推断 概率图模型(ProbabilisticGraphicalModel,PGM)是一种用图结构来表示和推断多元随机变量之间条件独立性的概率模型。图模型提供了一种直观且有效的方式来描述高维空间中的概率分布,通过图结构表示随机变量之间的关系,使得模
- 机器学习---贝叶斯网络与朴素贝叶斯
三月七꧁ ꧂
机器学习机器学习人工智能
1.贝叶斯法则如何判定一个人是好人还是坏人?当你无法准确的熟悉一个事物的本质时,你可以依靠与事物特定本质相关的事件出现的次数来判断其本质属性的概率。如果你看到一个人总是做一些好事,那这个人就越可能是一个好人。数学语言表达就是:支持某项属性的事件发生得越多,则该属性成立的可能性就越大。贝叶斯法则来源于英国数学家贝叶斯(ThomasBayes)在1763年发表的著作《论有关机遇问题的求解》。贝叶斯法则
- 人工智能:一种现代的方法 第十四章 概率推理
一只大小菜
人工智能:一种现代的方法人工智能
文章目录人工智能:一种现代的方法第十四章概率推理本章前言14.1不确定性问题域中的知识表示14.1.1联合概率分布14.1.2贝叶斯网络14.2贝叶斯网络的语义14.2.1表示联合概率分布14.2.2紧致性14.2.3节点排序14.2.4贝叶斯网络中的条件独立关系14.3条件分布的有效表示14.4贝叶斯网络的精确推理14.4.1通过枚举进行推理14.4.2变量消元算法14.4.5精确推理的复杂度1
- 斯坦福经典AI课程CS 221官方笔记来了!机器学习模型、贝叶斯网络等重点速查...
zenRRan
来源:新智元、Stanford作者:鹏飞斯坦福大学的人工智能课程“CS221”,这门铁打的课程从2011年开始已经走过了8个年头,流水的讲师换了一批又一批,送走的毕业生一拨又一拨,至今仍然是人工智能学习的经典课程之一。目前2019年春季课程正在如火如荼的开展中。这门课程是没有教科书的,所有内容都蕴含在讲师的教案以及课后作业中。不过为了方便广大不能亲临现场听讲的同学,课程官方推出了课程笔记Cheat
- 贝叶斯网络结构学习方法简介
打你个大屁股
人工智能人工智能贝叶斯
题目:贝叶斯网络结构学习方法简介贝叶斯网络(Bayesiannetwork,BN)结构学习就是从给定的数据集中学出贝叶斯网络结构,即各节点之间的依赖关系;只有确定了结构才能继续学得网络参数,即表示各节点之间依赖强弱的条件概率。对于普通人来说(非贝叶斯网络的专业研究人员,仅一般使用者),希望的是能够有那么一个函数,函数的输入是数据集,输出即为贝叶斯网络结构。目前确实有很多贝叶斯网络工具箱,但新人上手
- 【机器学习6】概率图模型
猫头不能躺
《百面机器学习》机器学习人工智能
用观测结点表示观测到的数据,用隐含结点表示潜在的知识,用边来描述知识与数据的相互关系,最后基于这样的关系图获得一个概率分布。概率图中的节点分为隐含节点和观测节点,边分为有向边和无向边。从概率论的角度,节点对应于随机变量,边对应于随机变量的依赖或相关关系,其中有向边表示单向的依赖,无向边表示相互依赖关系。概率图模型分为贝叶斯网络(BayesianNetwork)和马尔可夫网络(MarkovNetwo
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri