特征图可视化为类激活图(CAM)--简化版

本篇博客是简化版本的CAM,针对于不同特征图进行可视化。

其余两篇:
CAM实现的流程(pytorch)
Grad-Cam实现流程(pytorch)

在图像分类领域的论文中,经常看到如下所示的可视化图片。将特征图的响应大小,映射到了原图,能让读者更直观的了解模型的效果。这类图,通常被称为类激活图(CAM, Class Activation Map),或者注意力图、热图。

特征图可视化为类激活图(CAM)--简化版_第1张图片
其实,绘制这种图片并不难,通过opencv就可以实现,并且,不限于你的深度学习框架,tensorflow,pytorch,keras都可以,前提是你能够提取出特征图。上一张图,是我使用训练好的细粒度分类模型(网络结构源于Mutual-Channel Loss )可视化的结果。
用到的函数为:cv2.applyColorMap(),cv2.addWeighted()
cv2.applyColorMap()函数的功能是将矩阵转化为伪彩色图(可以把伪彩色图近似于热力图)。
cv2.addWeighted()函数是将两张图片融合。

上图绘制的思想是:

  1. 将一张图片输入训练好的模型,预测分类结果。然后获取我们想要可视化那一层的特征图(未经过bn和relu等)。
  2. 可以通过切片方式,选择单个通道或者多通道的第一步得到的特征图。
  3. 将特征图resize为原始图片大小,以便能够与原始图片叠加。
  4. 将特征图按照每个元素的大小生成伪彩色图片。
  5. 原始图片与伪彩色图片叠加。

代码示例:

import numpy as np
import cv2
import matplotlib.pyplot as plt
# heat 为某层的特征图,自己手动获取
heat = heat.data.cpu().numpy()	     # 将tensor格式的feature map转为numpy格式
heat = np.squeeze(heat, 0)	         # 0维为batch维度,由于是单张图片,所以batch=1,将这一维度删除
heat = heat[145*3:145*3+3,:]        # 切片获取某几个通道的特征图
heatmap = np.maximum(heat, 0)        # heatmap与0比较
heatmap = np.mean(heatmap, axis=0)  # 多通道时,取均值
heatmap /= np.max(heatmap)          # 正则化到 [0,1] 区间,为后续转为uint8格式图做准备
#plt.matshow(heatmap)				# 可以通过 plt.matshow 显示热力图
#plt.show()

# 用cv2加载原始图像
img = cv2.imread('./Forsters_Tern_0016_152463.jpg')
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))  # 特征图的大小调整为与原始图像相同
heatmap = np.uint8(255 * heatmap)               # 将特征图转换为uint8格式
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)  # 将特征图转为伪彩色图
heat_img = cv2.addWeighted(img, 1, heatmap, 0.5, 0)     # 将伪彩色图与原始图片融合
#heat_img = heatmap * 0.5 + img       		      # 也可以用这种方式融合
cv2.imwrite('./heat_all_3.jpg', heat_img)          # 将图像保存

opencv中一共有12种模式。其中能够用于绘制CAM的有cv2.COLORMAP_JETcv2.COLORMAP_RAINBOWcv2.COLORMAP_HSV这三种模式,其余效果不太好。12种模式可参考:cv2伪彩色applyColorMap()函数

12种彩色模式效果:
特征图可视化为类激活图(CAM)--简化版_第2张图片
参考链接:
https://blog.csdn.net/C_chuxin/article/details/85265082

你可能感兴趣的:(pytorch,特征图可视化,热图)