实践:Ceres BA(1)

1.Ceres BA

我们用BAL数据集进行BA,一个场景中的路标和相机位姿由文本给定,具体格式见:http://grail.cs.washington.edu/projects/bal,使用common.h中定义的BALProblem类读入该文件的内容,然后分别用Ceres和g2o求解
实践:Ceres BA(1)_第1张图片
我们对要求看完后,对代码的结构进行由框架到内部细节的实现,流程分析过程如下:

int main(int argc, char **argv) {
    if (argc != 2) {
        cout << "usage: bundle_adjustment_ceres bal_data.txt" << endl;
        return 1;
    }
    BALProblem bal_problem(argv[1]);  
    bal_problem.Normalize();  
    bal_problem.Perturb(0.1, 0.5, 0.5);
    bal_problem.WriteToPLYFile("initial.ply");
    SolveBA(bal_problem);
    bal_problem.WriteToPLYFile("final.ply");

    return 0;
}

(1)构建BALProblem类,创建类对象从数据集(文件)种读取数据;
(2)通过调用BALProblem类中的函数Normalize()函数对原始数据进行归一化(z轴值为1,将其投影到归一化平面,然后做一个合适的尺度缩放(此处的理解可以参考光流法中的金字塔模型比较好理解),使得优化数值更稳定,防止出现误差大,偏移大的BA约束边;
(3)调用BALProblem类中的Perbturb()函数给数据加上噪声,符合真实情况下采集到的带误差的数据;
(4)调用BALProblem类内的WriteToPLYFile()函数,将读到的带噪声的文本数据写入以.ply为后缀的点云文件中,然后通过Meshlab软件进行可视化查看;
(5)搭建BA问题,构建SolveBA()函数来求解即对进行文本种给定的数据(相机的内参,外参,路标点)进行优化;
(6)将优化后的数据写入新建的ply点云文件中进行可视化显示;
该实例的大致流程可以分为这5步,现在我们年针对每步骤的实现进行细节性的分析和实现。
1)构建BALProblem类,创建类对象从数据集(文件)种读取数据;BALProblem bal_problem(argv[1]);

  • 读取数据前需要先构建BALProblem类
    通过构建的BALProblem类的构造函数从文件中读取内容;
//explicit关键字只能用于内部的构造函数声明上。用该关键字修饰的类不能发生隐式类型转换,只能显示的方式进行类型转换。
BALProblem::explicit BALProblem(const std::string &filename, bool use_quaternions = false);

创建一个该类的对象,然后嗲用该构造函数,将文件路径传入即可;
2)通过调用BALProblem类中的函数Normalize()函数对原始数据进行归一化(z轴值为1,将其投影到归一化平面,然后做一个合适的尺度缩放(此处的理解可以参考光流法中的金字塔模型比较好理解),使得优化数值更稳定,防止出现误差大,偏移大的BA约束边;bal_problem.Normalize();

void BALProblem::Normalize() {
    // Compute the marginal median of the geometry
    std::vector<double> tmp(num_points_);
    Eigen::Vector3d median;
    double *points = mutable_points();
    for (int i = 0; i < 3; ++i) {
        for (int j = 0; j < num_points_; ++j) {
            tmp[j] = points[3 * j + i];
        }
        median(i) = Median(&tmp);
    }

    for (int i = 0; i < num_points_; ++i) {
        VectorRef point(points + 3 * i, 3);
        tmp[i] = (point - median).lpNorm<1>();
    }

    const double median_absolute_deviation = Median(&tmp);

    // Scale so that the median absolute deviation of the resulting
    // reconstruction is 100

    const double scale = 100.0 / median_absolute_deviation;

    // X = scale * (X - median)
    for (int i = 0; i < num_points_; ++i) {
        VectorRef point(points + 3 * i, 3);
        point = scale * (point - median);
    }

    double *cameras = mutable_cameras();
    double angle_axis[3];
    double center[3];
    for (int i = 0; i < num_cameras_; ++i) {
        double *camera = cameras + camera_block_size() * i;
        CameraToAngelAxisAndCenter(camera, angle_axis, center);
        // center = scale * (center - median)
        VectorRef(center, 3) = scale * (VectorRef(center, 3) - median);
        AngleAxisAndCenterToCamera(angle_axis, center, camera);
    }
}
  • 进行归一化,首先需要从获取到的内容中找到路标点的3D坐标值;
    调用 double* BALProblem:: mutable_points() { return parameters_ + camera_block_size() * num_cameras_; }来获取路标点的起始地址;
    通过数据集中数据的存储格式:
    实践:Ceres BA(1)_第2张图片
    我们可以知道路标点的起始地址在相机数据的后面,而相机的参数的大小由相机待优化的变量个数和相机的个数有关,通过
    parameters_ + camera_block_size() * num_cameras_;就可以得到路标点的起始地址,其中parameters_是相机参数的其是地址const double *BALProblem::cameras() const { return parameters_; }, num_cameras_是相机个数int BALProblem::num_cameras() const { return num_cameras_; }, 其中的camera_block_size()是每个相机中待优化的变量的个数:int camera_block_size() const { return use_quaternions_ ? 10 : 9; },如果是四元数就是10个优化变量,如果为false,就是9个待优化变量(三个维度的旋转,三个维度的平移,焦距f,畸变系数k2,k1)。
    定位找到数据中路标点的起始地址后,开始获取对应的坐标值,每个路标点是三维的,所以通过
std::vector<double> tmp(num_points_);
Eigen::Vector3d median;
for (int i = 0; i < 3; ++i) {
        for (int j = 0; j < num_points_; ++j) {
            tmp[j] = points[3 * j + i];
        }
        median(i) = Median(&tmp);
    }

获取路标点的坐标值,并作排序,然后将每个路标点进行欧拉范式操作然后进行存储

typedef Eigen::Map<Eigen::VectorXd> VectorRef;
for (int i = 0; i < num_points_; ++i) {
        VectorRef point(points + 3 * i, 3);
        tmp[i] = (point - median).lpNorm<1>();
    }

    const double median_absolute_deviation = Median(&tmp);

然后通过Scale的缩放,归一化操作

const double scale = 100.0 / median_absolute_deviation;

    // X = scale * (X - median)
    for (int i = 0; i < num_points_; ++i) {
        VectorRef point(points + 3 * i, 3);
        point = scale * (point - median);
    }

接下来通过获取到的相机的起始地址来获取像机的参数,然后对相机的平移部分进行对应的缩放操作:

double *cameras = mutable_cameras();
    double angle_axis[3];
    double center[3];
    for (int i = 0; i < num_cameras_; ++i) {
        double *camera = cameras + camera_block_size() * i;
        CameraToAngelAxisAndCenter(camera, angle_axis, center);
        // center = scale * (center - median)
        VectorRef(center, 3) = scale * (VectorRef(center, 3) - median);
        AngleAxisAndCenterToCamera(angle_axis, center, camera);
    }
void BALProblem::CameraToAngelAxisAndCenter(const double *camera,
                                            double *angle_axis,
                                            double *center) const {
    VectorRef angle_axis_ref(angle_axis, 3);
    if (use_quaternions_) {
        QuaternionToAngleAxis(camera, angle_axis);
    } else {
        angle_axis_ref = ConstVectorRef(camera, 3);
    }

    // c = -R't
    Eigen::VectorXd inverse_rotation = -angle_axis_ref;
    AngleAxisRotatePoint(inverse_rotation.data(),
                         camera + camera_block_size() - 6,
                         center);
    VectorRef(center, 3) *= -1.0;
}

void BALProblem::AngleAxisAndCenterToCamera(const double *angle_axis,
                                            const double *center,
                                            double *camera) const {
    ConstVectorRef angle_axis_ref(angle_axis, 3);
    if (use_quaternions_) {
        AngleAxisToQuaternion(angle_axis, camera);
    } else {
        VectorRef(camera, 3) = angle_axis_ref;
    }

    // t = -R * c
    AngleAxisRotatePoint(angle_axis, center, camera + camera_block_size() - 6);
    VectorRef(camera + camera_block_size() - 6, 3) *= -1.0;
}

3)调用BALProblem类中的Perbturb()函数给数据加上噪声,符合真实情况下采集到的带误差的数据bal_problem.Perturb(0.1, 0.5, 0.5);

void BALProblem::Perturb(const double rotation_sigma,
                         const double translation_sigma,
                         const double point_sigma) {
    assert(point_sigma >= 0.0);
    assert(rotation_sigma >= 0.0);
    assert(translation_sigma >= 0.0);

    double *points = mutable_points();
    if (point_sigma > 0) {
        for (int i = 0; i < num_points_; ++i) {
            PerturbPoint3(point_sigma, points + 3 * i);
        }
    }

    for (int i = 0; i < num_cameras_; ++i) {
        double *camera = mutable_cameras() + camera_block_size() * i;

        double angle_axis[3];
        double center[3];
        // Perturb in the rotation of the camera in the angle-axis
        // representation
        CameraToAngelAxisAndCenter(camera, angle_axis, center);
        if (rotation_sigma > 0.0) {
            PerturbPoint3(rotation_sigma, angle_axis);
        }
        AngleAxisAndCenterToCamera(angle_axis, center, camera);

        if (translation_sigma > 0.0)
            PerturbPoint3(translation_sigma, camera + camera_block_size() - 6);
    }
}
  • 分别给路标点,相机的旋转和平移添加噪声数据
    4)调用BALProblem类内的WriteToPLYFile()函数,将读到的带噪声的文本数据写入以.ply为后缀的点云文件中,然后通过Meshlab软件进行可视化查看bal_problem.WriteToPLYFile("initial.ply");
    向该文件流中导入相机的平移向量和路标点,和通道颜色。
void BALProblem::WriteToPLYFile(const std::string &filename) const {
    std::ofstream of(filename.c_str());

    of << "ply"
       << '\n' << "format ascii 1.0"
       << '\n' << "element vertex " << num_cameras_ + num_points_
       << '\n' << "property float x"
       << '\n' << "property float y"
       << '\n' << "property float z"
       << '\n' << "property uchar red"
       << '\n' << "property uchar green"
       << '\n' << "property uchar blue"
       << '\n' << "end_header" << std::endl;

    // Export extrinsic data (i.e. camera centers) as green points.
    double angle_axis[3];
    double center[3];
    for (int i = 0; i < num_cameras(); ++i) {
        const double *camera = cameras() + camera_block_size() * i;
        CameraToAngelAxisAndCenter(camera, angle_axis, center);
        of << center[0] << ' ' << center[1] << ' ' << center[2]
           << "0 255 0" << '\n';
    }

    // Export the structure (i.e. 3D Points) as white points.
    const double *points = parameters_ + camera_block_size() * num_cameras_;
    for (int i = 0; i < num_points(); ++i) {
        const double *point = points + i * point_block_size();
        for (int j = 0; j < point_block_size(); ++j) {
            of << point[j] << ' ';
        }
        of << "255 255 255\n";
    }
    of.close();
}

5)搭建BA问题,构建SolveBA()函数来求解即对进行文本种给定的数据(相机的内参,外参,路标点)进行优化SolveBA(bal_problem);

void SolveBA(BALProblem &bal_problem) {
    const int point_block_size = bal_problem.point_block_size();
    const int camera_block_size = bal_problem.camera_block_size();
    double *points = bal_problem.mutable_points();
    double *cameras = bal_problem.mutable_cameras();

    // Observations is 2 * num_observations long array observations
    // [u_1, u_2, ... u_n], where each u_i is two dimensional, the x
    // and y position of the observation.
    const double *observations = bal_problem.observations();
    ceres::Problem problem;

    for (int i = 0; i < bal_problem.num_observations(); ++i) {
        ceres::CostFunction *cost_function;

        // Each Residual block takes a point and a camera as input
        // and outputs a 2 dimensional Residual
        cost_function = SnavelyReprojectionError::Create(observations[2 * i + 0], observations[2 * i + 1]);

        // If enabled use Huber's loss function.
        ceres::LossFunction *loss_function = new ceres::HuberLoss(1.0);

        // Each observation corresponds to a pair of a camera and a point
        // which are identified by camera_index()[i] and point_index()[i]
        // respectively.
        double *camera = cameras + camera_block_size * bal_problem.camera_index()[i];
        double *point = points + point_block_size * bal_problem.point_index()[i];

        problem.AddResidualBlock(cost_function, loss_function, camera, point);
    }

    // show some information here ...
    std::cout << "bal problem file loaded..." << std::endl;
    std::cout << "bal problem have " << bal_problem.num_cameras() << " cameras and "
              << bal_problem.num_points() << " points. " << std::endl;
    std::cout << "Forming " << bal_problem.num_observations() << " observations. " << std::endl;

    std::cout << "Solving ceres BA ... " << endl;
    ceres::Solver::Options options;
    options.linear_solver_type = ceres::LinearSolverType::SPARSE_SCHUR;
    options.minimizer_progress_to_stdout = true;
    ceres::Solver::Summary summary;
    ceres::Solve(options, &problem, &summary);
    std::cout << summary.FullReport() << "\n";
}

BA问题就是从视觉图像中优化路标的3d模型空间位置和相机的内参和外参的过程。首先我们需要构建最小二乘问题ceres::Problem problem其中最主要的步骤就是向问题中添加误差项problem.AddResidualBlock(cost_function, loss_function, camera, point);其中每一个残差都是由一个相机和一个观测点产生的,每一个残差有u,v两个坐标的值描述,cost_function = SnavelyReprojectionError::Create(observations[2 * i + 0], observations[2 * i + 1]);, 然后在对应的误差项中添加核函数ceres::LossFunction *loss_function = new ceres::HuberLoss(1.0);和待估计的变量double *camera = cameras + camera_block_size * bal_problem.camera_index()[i]; double *point = points + point_block_size * bal_problem.point_index()[i];

其中的残差的构建:static ceres::CostFunction *Create(const double observed_x, const double observed_y) { return (new ceres::AutoDiffCostFunction( new SnavelyReprojectionError(observed_x, observed_y))); }

SnavelyReprojectionError(double observation_x, double observation_y) : observed_x(observation_x),
                                                                           observed_y(observation_y) {}

    template<typename T>
    bool operator()(const T *const camera,
                    const T *const point,
                    T *residuals) const {
        // camera[0,1,2] are the angle-axis rotation
        T predictions[2];
        CamProjectionWithDistortion(camera, point, predictions);
        residuals[0] = predictions[0] - T(observed_x);  //预测值-观测值
        residuals[1] = predictions[1] - T(observed_y);

        return true;
    }
// camera : 9 dims array
    // [0-2] : angle-axis rotation
    // [3-5] : translateion
    // [6-8] : camera parameter, [6] focal length, [7-8] second and forth order radial distortion
    // point : 3D location.
    // predictions : 2D predictions with center of the image plane.
    template<typename T>
    static inline bool CamProjectionWithDistortion(const T *camera, const T *point, T *predictions) {
        // Rodrigues' formula
        T p[3];
        AngleAxisRotatePoint(camera, point, p);
        // camera[3,4,5] are the translation
        p[0] += camera[3];
        p[1] += camera[4];
        p[2] += camera[5];

        // Compute the center fo distortion
        T xp = -p[0] / p[2];
        T yp = -p[1] / p[2];

        // Apply second and fourth order radial distortion
        const T &l1 = camera[7];
        const T &l2 = camera[8];

        T r2 = xp * xp + yp * yp;
        T distortion = T(1.0) + r2 * (l1 + l2 * r2);

        const T &focal = camera[6];
        predictions[0] = focal * distortion * xp;
        predictions[1] = focal * distortion * yp;

        return true;
    }

最后通过配置求解器ceres::Solver::Options options; 选择有优化选项options.linear_solver_type = ceres::LinearSolverType::SPARSE_SCHUR;选择增量方程求解方式,使用SPARSE_SCHUR会让Ceres实际求解过程和我们书本中描述的一致,即先对路标部分进行Schur边缘化,以加速的方式求解此问题,不过,在Ceres中我们不能确定先对哪部分变量边缘化,由Ceres求解器自动寻找并计算。然后输出到cout options.minimizer_progress_to_stdout = true;,最后开始优化 ceres::Solve(options, &problem, &summary); 其中ceres::Solver::Summary summary;是优化信息。
6)将优化后的数据写入新建的ply点云文件中进行可视化显示bal_problem.WriteToPLYFile("final.ply");
最后将优化后的数据写入对应的点云文件中,通过可视化工具看优化结果。

实验的运行结果:
initial.ply
实践:Ceres BA(1)_第3张图片
final.ply
实践:Ceres BA(1)_第4张图片

你可能感兴趣的:(深蓝orb-slam,slam)