- u-net系列算法
㡽闧㔯
人工智能算法
语义分割M整体结构:M概述就是编码解码过程简单但是很实用,应用广起初是做医学方向,现在也是U-net主要网络结构:还引入了特征拼接操作M以前我们都是加法,现在全都要这么简单的结构就能把分割任务做好U-net++整体网络结构:特征融合,拼接更全面其实跟densenet思想一致把能拼能凑的特征全用上就是升级版了U-net++DeepSupervision:也是很常见的事,多输出损失由多个位置计算,再更
- 基于FPGA的DDS连续FFT 仿真验证
toonyhe
FPGA开发fpga开发DDSFFTIFFT
基于FPGA的DDS连续FFT仿真验证1摘要本文聚焦AMDLogiCOREIPFastFourierTransform(FFT)核心,深入剖析其在FPGA设计中的应用。该FFT核心基于Cooley-Tukey算法,具备丰富特性,如支持多种数据精度、算术类型及灵活的运行时配置。文中详细介绍了其架构选项、端口设计、理论运算原理,以及在不同场景下的动态范围特性。同时,结合VivadoDesignSuit
- Marker可以快速且准确地将PDF转换为markdown格式。
星霜笔记
开源关注简介免费源码pdf
MarkerMarker可以快速且准确地将PDF转换为markdown格式。支持多种文档类型(针对书籍和科学论文进行了优化)支持所有语言移除页眉/页脚/其他杂质格式化表格和代码块提取并保存图像以及markdown将大多数方程转换为latex支持在GPU、CPU或MPS上运行工作原理Marker是一个由深度学习模型组成的管道:提取文本,必要时进行OCR处理(启发式算法,surya,tesseract
- “四预”驱动数字孪生水利:让智慧治水守护山河安澜
GeoSaaS
实景三维智慧城市人工智能gis大数据安全
近年来,从黄河秋汛到海河特大洪水,从珠江流域性洪灾到长江罕见骤旱,极端天气频发让水安全问题备受关注。如何实现“治水于未发”?数字孪生水利以“预报、预警、预演、预案”(四预)为核心,正在掀起一场水利治理的智慧革命。一、数字孪生水利:从物理世界到虚拟镜像的跃迁数字孪生水利并非简单的“数字建模”,而是通过高精度传感器、大数据、人工智能等技术,在虚拟空间构建与物理流域完全映射的“数字分身”,实现水情、工情
- 硬件NAS将成为电子垃圾?
DeepSeek+NAS
家用NASWinNAS飞牛NAS人工智能安卓NAS
随着人工智能(AI)技术的快速发展,传统的NAS设备正面临一场深刻的变革。过去,NAS的主要功能是提供数据存储和共享服务,但在AI时代,单纯的存储功能已无法满足用户需求。未来的NAS必须集成本地AI能力,才能成为真正的AI-NAS。然而,当前市场上的NAS产品硬件配置普遍较低,无法支持本地AI的运行。因此,现有的硬件NAS在三年内可能会被淘汰,取而代之的将是集成了AI和NAS功能的家用AI服务器。
- Hugging Face预训练GPT微调ChatGPT(微调入门!新手友好!)
y江江江江
机器学习大模型gptchatgpt
HuggingFace预训练GPT微调ChatGPT(微调入门!新手友好!)在实战中,⼤多数情况下都不需要从0开始训练模型,⽽是使⽤“⼤⼚”或者其他研究者开源的已经训练好的⼤模型。在各种⼤模型开源库中,最具代表性的就是HuggingFace。HuggingFace是⼀家专注于NLP领域的AI公司,开发了⼀个名为Transformers的开源库,该开源库拥有许多预训练后的深度学习模型,如BERT、G
- 【DeepSeek】 全方位使用指南————简版
諰.
人工智能aiAI写作
一、平台概述DeepSeek(深度求索)是专注实现AGI的中国的人工智能公司,提供多款AI产品:智能对话(Chat)文生图(Art)代码助手(Coder)API开发接口企业定制解决方案二、注册与登录2.1账号创建访问官网https://www.deepseek.com点击右上角「注册」支持三种方式:手机号+短信验证邮箱注册(需验证邮件)第三方登录(微信/Google账号)2.2订阅计划套餐类型免费
- Open-Sora - 为所有人实现高效的视频制作大众化
小众AI
AI开源音视频人工智能AI编程
GitHub:https://github.com/hpcaitech/Open-Sora更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现-小众AI这是一款开源的SOTA(State-of-the-Art)视频生成模型,仅用20万美元(224张GPU)就能训练出商业级11B参数的视频生成大模型。它采用Python语言和PyTorch深度学习框架开发,具有生成速度快、资源消
- 算法基础——蓝桥杯(python实现,实际上大多数用c++更明白易懂)(第一部分,共12个小题)
New_Teen
算法蓝桥杯python
1.成绩统计问题描述:编写一个程序,建立一个字典,每个字典包含姓名、学号、英语成绩、数学成绩和C++成绩,并通过字典操作平均分最高的学生和平均分最低的学生并且输出。输入格式:输入n+1行,第一行输入一个正整数n,表示学生数量;接下来的n行每行输入5个数据,分别表示姓名、学号、英语成绩、数学成绩和C++成绩。注意成绩有可能会有小数。输出格式:输出两行,第一行输出平均成绩最高的学生姓名。第二行输出平均
- 【C++】动态规划从入门到精通
諰.
动态规划c++
一、动态规划基础概念详解什么是动态规划动态规划(DynamicProgramming,DP)是一种通过将复杂问题分解为重叠子问题,并存储子问题解以避免重复计算的优化算法。它适用于具有以下两个关键性质的问题:最优子结构:问题的最优解包含子问题的最优解重叠子问题:不同决策序列会重复求解相同的子问题下面用一些例子(由浅入深)了解动态规划1.1斐波那契数列递归实现解析intfib(intn){if(n>d
- 机器学习课堂4线性回归模型+特征缩放
木尘152132
机器学习线性回归python
一、实验2-2,线性回归模型,计算模型在训练数据集和测试数据集上的均方根误差代码:#2-2线性回归模型importpandasaspdimportnumpyasnpimportmatplotlib.pyplotasplt#参数设置iterations=3000#迭代次数learning_rate=0.0001#学习率m_train=3000#训练样本的数量flag_plot_lines=False
- 【存储中间件】Redis核心技术与实战(六):Redis的设计与实现(缓存淘汰算法、过期策略与惰性删除)
道友老李
#Redis核心技术与实战架构师进阶-存储中间件缓存中间件redis
文章目录Redis的设计与实现缓存淘汰算法maxmemoryNoevictionvolatile-lruvolatile-ttlvolatile-randomallkeys-lruallkeys-randomLRU算法近似LRU算法LFU算法为什么Redis要缓存系统时间戳过期策略和惰性删除过期惰性删除lazyfree个人主页:道友老李欢迎加入社区:道友老李的学习社区Redis的设计与实现缓存淘汰
- 风控算法(一)——数据测试
月亮月亮要去太阳
机器学习人工智能
下面的内容都是针对数据源测试的一些可能得问题:1、请描述你在开发和执行数据测试流程时的具体步骤。确定样本(对齐样本与时间,去除假样本)——确定特征(确认目前特征)——数据信息(返回的数据字典、收费方式、底层数据:特征、分数)——数据清洗(缺失值替换)——数据训练形成报告。2、如何确定数据产品在风险模型中的潜在价值和适用性的?AUC、IV、相关性、性价比、数据产品背景和领域3、请详细描述你负责的10
- 12.1-12.7学习周报
谢m鑫天天揍我
学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录摘要Abstract一、k-近邻法二、持续学习总结摘要本周主要学习了k邻近算法的原理和应用场景,了解了持续学习的有关概念和原理。AbstractThisweek,wemainlylearnedtheprinciplesandapplicationscenariosofk-proximityalgorithm,andlearne
- Adam-mini:深度学习内存效率新突破
XianxinMao
人工智能深度学习人工智能
标题:Adam-mini:深度学习内存效率新突破文章信息摘要:Adam-mini优化器在深度学习领域展现出突破性潜力,尤其在内存效率和计算性能上表现卓越。相比AdamW,Adam-mini将内存效率提升了一倍,并通过减少学习率数量显著降低了内存消耗,同时保持了与AdamW相当甚至更好的性能。在训练十亿参数级别的大语言模型(LLM)时,Adam-mini实现了49.6%的吞吐量提升,并减少了33%的
- 【机器学习】模型拟合
CH3_CH2_CHO
什么?!是机器学习!!机器学习人工智能欠拟合过拟合
1、欠拟合1.1现象欠拟合是机器学习和统计建模中的一种常见问题,表现为模型无法充分捕捉数据中的潜在规律和模式。无论是训练数据还是测试数据,模型的预测误差都居高不下。在实际应用中,欠拟合的模型往往显得过于简单和粗糙,无法对数据进行有效的拟合和描述。1.2原因模型过于简单是导致欠拟合的主要原因:例如,使用直线去拟合具有明显曲线趋势的数据,或者使用低阶多项式去拟合高阶的复杂函数关系。这种情况下,模型的表
- 【人工智能】注意力机制深入理解
问道飞鱼
机器学习与人工智能人工智能注意力机制
文章目录**一、注意力机制的核心思想****二、传统序列模型的局限性****三、Transformer与自注意力机制****1.自注意力机制的数学公式****四、注意力机制的关键改进****1.稀疏注意力(SparseAttention)****2.相对位置编码(RelativePositionEncoding)****3.图注意力网络(GraphAttentionNetwork,GAN)****
- 笔记:代码随想录算法训练营day57:99.岛屿数量 深搜、岛屿数量 广搜、100.岛屿的最大面积
jingjingjing1111
深度优先算法笔记
学习资料:代码随想录注:文中含大模型生成内容99.岛屿数量卡码网题目链接(ACM模式)先看深搜方法:找到未标标记过的说明找到一片陆地的或者一片陆地的一个角落,dfs搜索是寻找相连接的陆地其余部分并做好标记#include#includeusingnamespacestd;intdirection[4][2]={0,1,-1,0,0,-1,1,0};voiddfs(constvector>&B612
- 并查集:从连通性检测到动态合并的算法艺术
六七_Shmily
数据结构与算法分析算法
并查集:从连通性检测到动态合并的算法艺术(C++实现)一、并查集:算法世界的隐形支柱在算法竞赛和工程实践中,并查集(DisjointSetUnion,DSU)是解决动态连通性问题的终极武器。它能在近乎常数时间内完成集合的合并与查询操作,广泛应用于社交网络、图像处理、编译器优化等领域。本文将深入剖析并查集的核心原理,并通过实战案例揭示其精妙之处。二、并查集的三重核心1.数据结构设计classDSU{
- 笔记:代码随想录算法训练营day56:图论理论基础、深搜理论基础、98. 所有可达路径、广搜理论基础
jingjingjing1111
笔记
学习资料:代码随想录连通图是给无向图的定义,强连通图是给有向图的定义朴素存储:二维数组邻接矩阵邻接表:list基础知识:C++容器类|菜鸟教程深搜是沿着一个方向搜到头再不断回溯,转向;广搜是每一次搜索要把当前能够得到的方向搜个遍深搜三部曲:传入参数、终止条件、处理节点+递推+回溯98.所有可达路径卡码网题目链接(ACM模式)先是用邻接矩阵,矩阵的x,y表示从x到y有一条边主要还是用回溯方法遍历整个
- Transformer与图神经网络的融合与应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer与图神经网络的融合与应用关键词:Transformer,图神经网络,注意力机制,图结构数据,图表示学习,图分类,图生成1.背景介绍近年来,深度学习技术在各个领域取得了显著的进展。其中,Transformer模型和图神经网络(GraphNeuralNetworks,GNNs)是两个备受关注的研究方向。Transformer最初应用于自然语言处理领域,通过自注意力机制实现了并行计
- 深度学习的颠覆性发展:从卷积神经网络到Transformer
AI天才研究院
AI大模型应用入门实战与进阶ChatGPT大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍深度学习是人工智能的核心技术之一,它通过模拟人类大脑中的神经网络学习从大数据中抽取知识,从而实现智能化的自动化处理。深度学习的发展历程可以分为以下几个阶段:2006年,GeoffreyHinton等人开始研究卷积神经网络(ConvolutionalNeuralNetworks,CNN),这是深度学习的第一个大突破。CNN主要应用于图像处理和语音识别等领域。2012年,AlexKrizh
- 群体智能优化算法-粒子群优化算法(Particle Swarm Optimization, PSO,含Matlab源代码)
HR Zhou
算法matlab智能优化算法优化
摘要(Abstract)粒子群优化(PSO)是一种基于群体智能的优化算法,受鸟群觅食行为的启发。PSO通过模拟粒子(个体)在搜索空间中的运动来寻找最优解。每个粒子根据自身的历史最优位置(pBest)和全局最优位置(gBest)动态调整速度和位置,从而在全局搜索和局部搜索之间取得平衡。PSO具有收敛速度快、实现简单、计算复杂度低等优点,广泛应用于函数优化、神经网络训练、工程优化等领域。算法介绍1.主
- 【MATLAB】simulink中的S-function
龙泽金
matlab开发语言
1.简介S-function(系统函数)在MATLAB的Simulink中具有重要作用。它是一种可以用多种编程语言(如C、C++、Fortran等)编写的函数,用于自定义模块的行为。通过编写S-function,可以实现特定的算法、逻辑或复杂的动态特性,来扩展Simulink的功能。S-function可以处理输入信号,进行计算,并产生输出信号。它能够实现对模型中特定部分的精细控制和定制化,以满足
- 两个单链表元素交叉合并
TXHNY
数据结构链表数据结构
设带头结点的线性单链表A={a1,a2,…,am},B={b1,b2,…,bn}。试编写算法按下列规则合并A、B为线性单链表C,使得C={a1,b1,a2,b2,...am,bm,...,bn},mn函数接口定义:LinkListCombineList(LinkListLa,LinkListLb);其中La和Lb都是用户传入的参数,分别为待合并单链表的头指针。函数须返回合并后的单链表的头指针。裁判
- 解析:浏览器事件冒泡及事件捕获
C860
浏览器浏览器
今天的效率有点奇葩,说高吧,一个上午做了不少事。说低吧,因为一个分布式的算法花了我不少时间,终于有点头绪。估计明天会写一篇文章来讲述一下自己的看法。而今天,还是回到前端。今天来说说事件冒泡和事件捕获。首先肯定是概念:什么是事件冒泡?什么是事件捕获?简单地说,事件冒泡和事件捕获都是一种事件传递的机制。这种机制可以使事件在不同级的元素间传递。事件冒泡是从事件触发的源节点,向父节点传递,直到到达最顶节点
- Ai时代初期,人类文明的多纬度演进方向分析
Ai度
人工智能
在AI时代初期,文明的演进呈现出多维度、跨领域的突破性特征,结合最新研究进展与实践案例,其深层变革可进一步细化为以下六大维度:一、技术平权与生产要素重构AI技术通过算力跃迁与认知革命重构生产要素。例如,华为昇腾芯片使县域政务系统获得省级决策能力,特斯拉工厂的机械臂实现0.8秒完成车身焊接,而量子-经典混合算法将药物分子模拟效率提升1200倍。这种技术平权运动正推动全球劳动生产率提升30%,同时催生
- 高性能计算:GPU加速与分布式训练
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着人工智能技术的飞速发展,深度学习模型的规模和复杂度不断提升,对计算能力的需求也越来越高。传统的CPU架构已经难以满足深度学习模型训练的需求,因此,GPU加速和分布式训练成为了高性能计算领域的研究热点。1.1.深度学习与计算挑战深度学习模型通常包含数百万甚至数十亿个参数,训练过程需要进行大量的矩阵运算和梯度更新,对计算资源的需求非常高。传统的CPU架构虽然具有较强的通用性,但其并行计
- 【数组模拟邻接表】
奋斗的阿庆
c++算法图论深度优先
前言在做图论算法题的过程中,总会遇到用数组来模拟邻接表进而表示图。之前一直没弄明白在用数组模拟邻接表相关的细节。如今明白了,记录一下。帮助不理解的小伙伴。一、所用变量constintN=1010;//表示点的个数constintM=10100;//表示边的条数inth[N];//h[i]表示以当前点i为起点所相连的第一条边的序号inte[2*M];//e[i]表示第i条边所对应的终点intne[2
- 基于Python的智能决策支持系统:实现智能化决策的关键要素
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
文章目录基于Python的智能决策支持系统:实现智能化决策的关键要素11.背景介绍2.核心概念与联系数据收集与预处理模型构建与训练决策规则生成与优化决策结果评估与反馈3.核心算法原理具体操作步骤数据挖掘算法机器学习算法优化算法4.数学模型和公式详细讲解举例说明线性回归模型最小二乘法5.项目实践:代码实例和详细解释说明6.实际应用场景金融领域医疗领域供应链管理智能制造7.工具和资源推荐编程语言和开发
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s