机器学习之线性回归及特征归一化



线性回归是一种回归分析技术,回归分析本质上就是一个函数估计的问题(函数估计包括参数估计和非参数估计),就是找出因变量和自变量之间的因果关系。回归分析的因变量是应该是连续变量,若因变量为离散变量,则问题转化为分类问题,回归分析是一个有监督学习问题。

线性其实就是一系列一次特征的线性组合,在二维空间中是一条直线,在三维空间中是一个平面,然后推广到n维空间,可以理解维广义线性吧。

例如对房屋的价格预测,首先提取特征,特征的选取会影响模型的精度,比如房屋的高度与房屋的面积,毫无疑问面积是影响房价的重要因素,二高度基本与房价不相关

下图中挑选了 面积、我是数量、层数、建成时间四个特征,然后选取了一些train Set{x(i) , y(i)}。

机器学习之线性回归及特征归一化_第1张图片

 有了这些数据之后就是进行训练,下面附一张有监督学习的示意图

机器学习之线性回归及特征归一化_第2张图片

Train Set 根据 学习算法得到模型h,对New Data x,直接用模型即可得到预测值y,本例中即可得到房屋大小,其实本质上就是根据历史数据来发现规律,事情总是偏向于向历史发生过次数多的方向发展。

下面就是计算模型了,才去的措施是经验风险最小化,即我们训练模型的宗旨是,模型训练数据上产生结果, 要与实际的y(i)越接近越好(假定x0 =1),定义损失函数J(θ)如下,即我们需要损失函数越小越好,本方法定义的J(θ)在最优化理论中称为凸(Convex)函数,即全局只有一个最优解,然后通过梯度下降算法找到最优解即可,梯度下降的形式已经给出。

机器学习之线性回归及特征归一化_第3张图片

 

 

梯度下降的具体形式:关于梯度下降的细节,请参阅 梯度下降详解

机器学习之线性回归及特征归一化_第4张图片

局部加权回归

有时候样本的波动很明显,可以采用局部加权回归,如下图,红色的线为局部加权回归的结果,蓝色的线为普通的多项式回归的结果。蓝色的线有一些欠拟合了。

机器学习之线性回归及特征归一化_第5张图片

局部加权回归的方法如下,首先看线性或多项式回归的损失函数“

机器学习之线性回归及特征归一化_第6张图片

很明显,局部加权回归在每一次预测新样本时都会重新确定参数,以达到更好的预测效果。当数据规模比较大的时候计算量很大,学习效率很低。并且局部加权回归也不是一定就是避免underfitting,因为那些波动的样本可能是异常值或者数据噪声。

在求解线性回归的模型时,有两个需要注意的问题:
一就是特征组合问题,比如房子的长和宽作为两个特征参与模型的构造,不如把其相乘得到面积然后作为一个特征来进行求解,这样在特征选择上就做了减少维度的工作。
二就是特征归一化(Feature Scaling),这也是许多机器学习模型都需要注意的问题。
有些模型在各个维度进行不均匀伸缩后,最优解与原来等价,例如logistic regression。对于这样的模型,是否标准化理论上不会改变最优解。但是,由于实际求解往往使用迭代算法,如果目标函数的形状太“扁”,迭代算法可能收敛得很慢甚至不收敛。所以对于具有伸缩不变性的模型,最好也进行数据标准化。
有些模型在各个维度进行不均匀伸缩后,最优解与原来等价,例如logistic regression。对于这样的模型,是否标准化理论上不会改变最优解。但是,由于实际求解往往使用迭代算法,如果目标函数的形状太“扁”,迭代算法可能收敛得很慢甚至不收敛。所以对于具有伸缩不变性的模型,最好也进行数据标准化。

归一化后有两个好处:如下图,x1的取值为0-2000,而x2的取值为1-5,假如只有这两个特征,对其进行优化时,会得到一个窄长的椭圆形,导致在梯度下降时,梯度的方向为垂直等高线的方向而走之字形路线,这样会使迭代很慢,相比之下,右图的迭代就会很快,提升模型的收敛速度

 

归一化的另一好处是提高精度,这在涉及到一些距离计算的算法时效果显著,比如算法要计算欧氏距离,上图中x2的取值范围比较小,涉及到距离计算时其对结果的影响远比x1带来的小,所以这就会造成精度的损失。所以归一化很有必要,他可以让各个特征对结果做出的贡献相同。

归一化种类主要有以下三种:

1)线性归一化

x' = \frac{x - \text{min}(x)}{\text{max}(x)-\text{min}(x)}

      这种归一化方法比较适用在数值比较集中的情况。这种方法有个缺陷,如果max和min不稳定,很容易使得归一化结果不稳定,使得后续使用效果也不稳定。实际使用中可以用经验常量值来替代max和min。

2)标准差标准化

  经过处理的数据符合标准正态分布,即均值为0,标准差为1,其转化函数为:

  其中μ为所有样本数据的均值,σ为所有样本数据的标准差。

3)非线性归一化

     经常用在数据分化比较大的场景,有些数值很大,有些很小。通过一些数学函数,将原始值进行映射。该方法包括 log、指数,正切等。需要根据数据分布的情况,决定非线性函数的曲线,比如log(V, 2)还是log(V, 10)等。

参考:http://www.cnblogs.com/LBSer/p/4440590.html

      http://www.cnblogs.com/LBSer/p/4440590.html


你可能感兴趣的:(学习笔记,机器学习,线性回归,特征归一化)