MapReduce项目案例4——乘用车辆和商用车辆销售数据分析

项目介绍

1.数据概况

  • 本数据为上牌汽车的销售数据,分为乘用车辆和商用车辆
  • 数据包含销售相关数据与汽车具体参数

2.数据项包括

  • 省0,月1,市2,区县3,年4,车辆型号5,制造商6,品牌7,车辆类型8,所有权9,
  • 使用性质10,数量11,发动机型号12,排量13,功率14,燃料种类15,车长16,车宽17,车高18,车厢长19,
  • 车厢宽20,车厢高21,轴数22,轴距23,前轮距24,轮胎规格25,轮胎数26,总质量27,整备质量28,核定X质量29,
  • 核定载客30,准牵引质量31,底盘企业32,底盘品牌33,底盘型号34,发动机企业35,车辆名称36,年龄37,性别38

3.输入数据

  • 数据量太大,此处复制不方便,自行百度

需求分析

汽车行业市场分析

1.通过统计乘用车辆(非营运)和商用车辆(营运)的数量和销售额分布

  • CountMap
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * 1.1通过统计乘用车辆(非营运)和商用车辆(其他)的数量和销售额分布
 */
public class CountMap extends Mapper<LongWritable, Text, IntWritable, LongWritable> {
    private IntWritable intWritable = new IntWritable();
    private LongWritable longWritable = new LongWritable();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String[] split = value.toString().trim().split(",");
        //月1 数量11
        if (split != null && split.length > 11 && split[11] != null && !"".equals(split[11].trim())) {
            try {
                intWritable.set(Integer.parseInt(split[1]));
                longWritable.set(Long.parseLong(split[11]));
                context.write(intWritable, longWritable);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }
}
  • CountCombine
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;
import java.util.logging.Logger;

/**
 * @program: Hadoop_MR
 * @description:
 * @author: 作者
 * @create: 2022-06-21 23:28
 */
public class CountCombine extends Reducer<Text, LongWritable, Text, LongWritable> {
    private Logger logger = Logger.getLogger(CountCombine.class.getName());

    private LongWritable res = new LongWritable();

    public CountCombine() {
        logger.info("CountCombine的构造方法,是单例吗?");//是
    }

    @Override
    protected void setup(Context context) throws IOException, InterruptedException {
        logger.info("CountCombine的setup执行时机");//开始一次
    }

    @Override
    protected void cleanup(Context context) throws IOException, InterruptedException {
        logger.info("CountCombine的cleanup执行时机");//结束一次
    }

    @Override
    protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
        Long sum = new Long(0);
        for (LongWritable val : values) {
            sum += val.get();
        }
        res.set(sum);
        logger.info("combine合并:" + key.toString() + ":" + res.get());
        context.write(key, res);
    }
}
  • CountReduce
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import java.util.logging.Logger;

/**
 * @program: Hadoop_MR
 * @description:
 * @author: 作者
 * @create: 2022-06-21 23:34
 */
public class CountReduce extends Reducer<Text, LongWritable, Text, Text> {
    private Logger logger = Logger.getLogger(CountCombine.class.getName());

    Map<String, Long> map = new HashMap<>();
    double all = 0;

    public CountReduce() {
        logger.info("CountReduce的构造方法,是单例吗?");
    }

    @Override
    protected void setup(Context context) throws IOException, InterruptedException {
        logger.info("CountReduce的setup执行时机");
    }

    @Override
    protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
        long sum = 0;
        for (LongWritable val : values) {
            sum += val.get();
        }
        all += sum;
        map.put(key.toString(), sum);
        logger.info("CountReduce的reduce:" + key.toString() + ":" + sum);
    }

    @Override
    protected void cleanup(Context context) throws IOException, InterruptedException {
        logger.info("CountReduce的cleanup执行时机");
        Set<String> keySet = map.keySet();
        for (String key : keySet) {
            long value = map.get(key);
            double percent = value / all;
            logger.info("CountReduce的cleanup:" + key.toString() + ":" + value + "\t" + percent);
            context.write(new Text(key), new Text(value + "\t" + percent));
        }
    }
}
  • App1
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @program: Hadoop_MR
 * @description:
 * @author: 作者
 * @create: 2022-06-21 23:45
 */
public class App1 {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Path input = new Path("E:\\HadoopMRData\\input");
        Path output = new Path("E:\\HadoopMRData\\output");
        if (args != null && args.length == 2) {
            input = new Path(args[0]);
            output = new Path(args[1]);
        }
        Configuration conf = new Configuration();

        //conf.set("fs.defaultFS","hdfs://node1:8020");
        /*FileSystem fs = FileSystem.get(conf);
        if (fs.exists(output)) {
            fs.delete(output, true);
        }*/
        Job job = Job.getInstance(conf, "通过统计乘用车辆(非营运)和商用车辆(其他)的数量和销售额分布");
        job.setJarByClass(App1.class);

        job.setMapperClass(CountMap.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);

        job.setCombinerClass(CountCombine.class);
        job.setReducerClass(CountReduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        //job.setNumReduceTasks(2);

        FileInputFormat.addInputPath(job, input);
        FileOutputFormat.setOutputPath(job, output);

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

2.统计山西省2013年每个月的汽车销售数量的比例,按月份排序

  • 输出格式:月份 数量 比例
  • CountMap
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class CountMap extends Mapper<LongWritable, Text, IntWritable, LongWritable> {
    private IntWritable intWritable = new IntWritable();
    private LongWritable longWritable = new LongWritable();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String[] split = value.toString().trim().split(",");
        //月1 数量11
        if (split != null && split.length > 11 && split[11] != null && !"".equals(split[11].trim())) {
            try {
                intWritable.set(Integer.parseInt(split[1]));
                longWritable.set(Long.parseLong(split[11]));
                context.write(intWritable, longWritable);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }
}
  • CountCombine
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * @program: Hadoop_MR
 * @description:
 * @author: 作者
 * @create: 2022-06-21 23:28
 */
public class CountCombine extends Reducer<IntWritable, LongWritable, IntWritable, LongWritable> {
    private LongWritable res = new LongWritable();

    @Override
    protected void reduce(IntWritable key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
        Long sum = new Long(0);
        for (LongWritable val : values) {
            sum += val.get();
        }
        res.set(sum);
        context.write(key, res);
    }
}
  • CountReduce
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

/**
 * @program: Hadoop_MR
 * @description:
 * @author: 作者
 * @create: 2022-06-21 23:34
 */
public class CountReduce extends Reducer<IntWritable, LongWritable, IntWritable, Text> {
    private Map<Integer, Long> map = new HashMap<Integer, Long>();
    private Long all = 0L;//总销售数
    private DoubleWritable doubleWritable = new DoubleWritable();//比例

    @Override
    protected void reduce(IntWritable key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
        Long sum = 0L;
        for (LongWritable val : values) {
            sum += val.get();
        }
        all += sum;
        map.put(key.get(), sum);
    }

    @Override
    protected void cleanup(Context context) throws IOException, InterruptedException {
        Set<Integer> keySet = map.keySet();
        for (Integer key : keySet) {
            Long value = map.get(key);
            double percent = value / (double) all;
            doubleWritable.set(percent);
            context.write(new IntWritable(key), new Text(value + "\t" + doubleWritable));
        }
    }
}
  • App2
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @program: Hadoop_MR
 * @description:
 * @author: 作者
 * @create: 2022-06-21 23:45
 */
public class App2 {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Path input = new Path("E:\\HadoopMRData\\input");
        Path output = new Path("E:\\HadoopMRData\\output");
        if (args != null && args.length == 2) {
            input = new Path(args[0]);
            output = new Path(args[1]);
        }
        Configuration conf = new Configuration();

        //conf.set("fs.defaultFS","hdfs://node1:8020");
        /*FileSystem fs = FileSystem.get(conf);
        if (fs.exists(output)) {
            fs.delete(output, true);
        }*/
        Job job = Job.getInstance(conf, "统计山西省2013年每个月的汽车销售数量的比例,按月份排序");
        job.setJarByClass(App2.class);

        job.setMapperClass(CountMap.class);
        job.setMapOutputKeyClass(IntWritable.class);
        job.setMapOutputValueClass(LongWritable.class);

        job.setCombinerClass(CountCombine.class);
        job.setReducerClass(CountReduce.class);
        job.setOutputKeyClass(IntWritable.class);
        job.setOutputValueClass(Text.class);

        //job.setNumReduceTasks(2);

        FileInputFormat.addInputPath(job, input);
        FileOutputFormat.setOutputPath(job, output);

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

3.统计安徽省2014年4月份各市区县的汽车销售的比例

  • 没有安徽省

用户数据市场分析

1.统计买车的男女比例及男女对车的颜色的选择

  • 没有颜色这个列
  • CountMap
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;


public class CountMap extends Mapper<LongWritable, Text, Text, LongWritable> {
    @Override//map的数量由切片决定,一个map的执行顺序setup-map1-map2-cleanup
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String[] split = value.toString().trim().split(",");
        if (split != null && split.length > 38 && split[38] != null) {
            if ("男性".equals(split[38]) || "女性".equals(split[38])) {
                context.write(new Text(split[38]), new LongWritable(1));
            }
        }
    }
}
  • CountCombine
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * @program: Hadoop_MR
 * @description:
 * @author: 作者
 * @create: 2022-06-21 23:28
 */
public class CountCombine extends Reducer<Text, LongWritable, Text, LongWritable> {
    private LongWritable res = new LongWritable();

    @Override
    protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
        long sum = 0L;
        for (LongWritable val : values) {
            sum += val.get();
        }
        res.set(sum);
        context.write(key, res);
    }
}
  • CountReduce
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

/**
 * @program: Hadoop_MR
 * @description:
 * @author: 作者
 * @create: 2022-06-21 23:34
 */
public class CountReduce extends Reducer<Text, LongWritable, Text, Text> {
    private Map<String, Long> map = new HashMap<String, Long>();
    private long all = 0L;//总销售数
    private DoubleWritable doubleWritable = new DoubleWritable();//比例

    @Override
    protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
        long sum = 0L;
        for (LongWritable val : values) {
            sum += val.get();
        }
        all += sum;
        map.put(key.toString(), sum);
    }

    @Override
    protected void cleanup(Context context) throws IOException, InterruptedException {
        Set<String> keySet = map.keySet();
        for (String key : keySet) {
            long value = map.get(key);
            double percent = value / (double) all;
            doubleWritable.set(percent);
            context.write(new Text(key), new Text(value + "\t" + doubleWritable));
        }
    }
}
  • App3
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @program: Hadoop_MR
 * @description:
 * @author: 作者
 * @create: 2022-06-21 23:45
 */
public class App3 {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Path input = new Path("E:\\HadoopMRData\\input");
        Path output = new Path("E:\\HadoopMRData\\output");
        if (args != null && args.length == 2) {
            input = new Path(args[0]);
            output = new Path(args[1]);
        }
        Configuration conf = new Configuration();

        //conf.set("fs.defaultFS","hdfs://node1:8020");
        /*FileSystem fs = FileSystem.get(conf);
        if (fs.exists(output)) {
            fs.delete(output, true);
        }*/
        Job job = Job.getInstance(conf, "统计买车的男女比例及男女对车的颜色的选择");
        job.setJarByClass(App3.class);

        job.setMapperClass(CountMap.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);

        job.setCombinerClass(CountCombine.class);
        job.setReducerClass(CountReduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        //job.setNumReduceTasks(2);

        FileInputFormat.addInputPath(job, input);
        FileOutputFormat.setOutputPath(job, output);

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

2.统计的车的所有权、型号和类型的汽车销售数及比例

  • CountMap
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;


public class CountMap extends Mapper<LongWritable, Text, Text, LongWritable> {
    @Override//map的数量由切片决定,一个map的执行顺序setup-map1-map2-cleanup
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String[] split = value.toString().trim().split(",");
        //所有权10、型号6和类型9
        if (split != null && split.length > 10 && split[10] != null && split[6] != null && split[9] != null) {
            if (!"".equals(split[10]) && !"".equals(split[6]) && !"".equals(split[9])) {
                context.write(new Text(split[10] + "\t" + split[6] + "\t" + split[9]), new LongWritable(1));
            }
        }
    }
}
  • CountReduce
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

/**
 * @program: Hadoop_MR
 * @description:
 * @author: 作者
 * @create: 2022-06-21 23:34
 */
public class CountReduce extends Reducer<Text, LongWritable, Text, Text> {
    private Map<String, Long> map = new HashMap<String, Long>();
    private long all = 0L;//总销售数
    private DoubleWritable doubleWritable = new DoubleWritable();//比例

    @Override
    protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
        long sum = 0L;
        for (LongWritable val : values) {
            sum += val.get();
        }
        all += sum;
        map.put(key.toString(), sum);
    }

    @Override
    protected void cleanup(Context context) throws IOException, InterruptedException {
        Set<String> keySet = map.keySet();
        for (String key : keySet) {
            long value = map.get(key);
            double percent = value / (double) all;
            doubleWritable.set(percent);
            context.write(new Text(key), new Text(value + "\t" + doubleWritable));
        }
    }
}
  • App4
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @program: Hadoop_MR
 * @description:
 * @author: 作者
 * @create: 2022-06-21 23:45
 */
public class App4 {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Path input = new Path("E:\\HadoopMRData\\input");
        Path output = new Path("E:\\HadoopMRData\\output");
        if (args != null && args.length == 2) {
            input = new Path(args[0]);
            output = new Path(args[1]);
        }
        Configuration conf = new Configuration();

        //conf.set("fs.defaultFS","hdfs://node1:8020");
        /*FileSystem fs = FileSystem.get(conf);
        if (fs.exists(output)) {
            fs.delete(output, true);
        }*/
        Job job = Job.getInstance(conf, "统计的车的所有权、型号和类型");
        job.setJarByClass(App4.class);

        job.setMapperClass(CountMap.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);

        job.setGroupingComparatorClass(Count10Group.class);

        job.setReducerClass(CountReduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        FileInputFormat.addInputPath(job, input);
        FileOutputFormat.setOutputPath(job, output);

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

3.每个类型车的用户做年龄和性别的统计

不同车型销售统计分析

1.统计不同类型车在一个月(对一段时间:如每个月或每年)的总销售量

2.通过不同类型(品牌)车销售情况,来统计发动机型号和燃料种类

3.统计价格相同而类型(品牌)不同车的销售量

针对某一品牌的竞争分析

1.统计一汽大众的每一年(每一个月)的销售量和增长率(趋势)

2.统计一汽大众在山西和安徽销售量及其价格的差异

你可能感兴趣的:(Hadoop,mapreduce,数据分析,hadoop)