- 从0开始制作ArcGis——第一章
geocat
从0开始制作ArcGisarcgisc++shp
一、关于shp文件1.什么是shp文件?2.shp文件的使用场景3.本章结束1.什么是shp文件?shp文件是一个存储了非拓扑几何体及其属性信息的地理特征的数据集。非拓扑:点、线、面等几何体之间并无拓扑关系,每一个记录(几何体)都是各自独立的;属性信息:dbf中存储了描述shp中这些几何体的信息,如点名等地理属性等特征。因为shp文件没有存储几何体之间的拓扑关系,因此shp文件在进行绘制和读写的时
- 背包总结——0-1背包及完全背包问题总结及代码模板
Baymax的学习日志
c++动态规划算法c++
背包总结背包问题通常是多种物品有多个属性,且已知条件为某属性被受限,求另一属性的最大/最小/等于/存在不存在。以0-1背包为例解释:n个物品具有的属性为重量和价值,其中总重量C将重量的属性限制住,求最大价值,即求另一属性的特征。针对背包问题:1、先判断属于0-1背包还是完全背包。2、看是求最大值/最小值/等值/是否存在/排列/组合(排列/组合问题通常出现在完全背包中)。确定了背包类型及要求的问题后
- 机器学习里的逻辑回归Logistic Regression基本原理与应用
硅基创想家
AI-人工智能与大模型机器学习逻辑回归人工智能
LogisticRegression即逻辑回归,是一种广泛应用于机器学习和数据挖掘领域的有监督学习算法,以下从原理、应用、算法优缺点等方面进行介绍:基本原理线性回归基础:逻辑回归基于线性回归模型,其基本形式为:z=w1x1+w2x2+⋯+wnxn+bz=w_1x_1+w_2x_2+\cdots+w_nx_n+bz=w1x1+w2x2+⋯+wnxn+b其中xix_ixi是特征变量,wiw_iwi是对
- Transformer
AI专题精讲
深度学习transformer深度学习自然语言处理
1.TransformerTransformer是一种新的、基于attention机制来实现的特征提取器,可用于代替CNN和RNN来提取序列的特征。Transformer首次由论文《AttentionIsAllYouNeed》提出,在该论文中Transformer用于encoder-decoder架构。事实上Transformer可以单独应用于encoder或者单独应用于decoder。Trans
- 数据结构 day05
cd小白
Linux阶段三:数据类型数据结构
数据结构day055.队列5.3.链式队列5.3.1.特征5.3.2.代码实现6.双向链表6.1.特性6.2.代码实现5.队列5.3.链式队列5.3.1.特征逻辑结构:线性结构存储结构:链式存储操作:创建、入列、出列、判空、清空5.3.2.代码实现头文件:linkqueue.h#ifndef__LINKQUEUE_H__#define__LINKQUEUE_H__typedefintdatatyp
- 《深度Q网络优化:突破高维连续状态空间的束缚》
人工智能深度学习
在人工智能的发展历程中,深度Q网络(DQN)作为强化学习与深度学习融合的关键成果,为解决复杂决策问题开辟了新路径。但当面对高维连续状态空间时,DQN会出现训练不稳定、收敛速度慢等问题,严重限制了其应用范围。如何优化DQN以适应高维连续状态空间,成为当下研究的热点。深度Q网络基础回顾深度Q网络结合了深度学习强大的特征提取能力与Q学习的决策优化思想。在传统强化学习中,Q学习通过Q表记录每个状态-动作对
- MATLAB出现“变量似乎要更改脚本中每个循环迭代的大小。请考虑对速度进行预分配。”警告如何解决...
滚菩提哦呢
算法
这个警告意味着你在MATLAB脚本中使用了一个循环,循环迭代中修改了变量的大小,但是未对该变量进行预分配。这可能会影响脚本的效率和性能。解决方案是:在循环开始前,通过预先分配内存来提高脚本的性能。例如,如果要循环一百次并将结果保存在数组中,可以在循环前执行以下操作:result=zeros(1,100);fori=1:100result(i)=...end这样可以避免MATLAB在循环中多次分配内
- ML.NET库学习006:成人人口普查数据分析与分类预测
North_D
ML.NET库机器学习人工智能深度学习数据挖掘目标检测自然语言处理神经网络
文章目录ML.NET库学习006:成人人口普查数据分析与分类预测概述数据集数据字段解释为何数据准备很重要主要功能与模块数据准备机器学习工作流代码结构说明数据准备模块机器学习工作流数据加载与分割特征工程与模型训练模型评估与预测实现细节与注意事项数据准备模块机器学习工作流性能优化项目优势LightGBM分类器原理说明总结ML.NET库学习006:成人人口普查数据分析与分类预测概述本项目使用C#和ML.
- 关于管理系统开发的密码安全设想
kinzlaw
软件开发系统管理数据库算法加密解密存储vpn
没能在网上找到这个问题的经验之谈,故把我的想法写下来,希望大家帮忙分析这种方案的利弊。在做系统管理的经验中,感觉到管理系统的开发人员应该为数据库连接密码和系统登录密码采取安全措施。两者看起来相似但细究起来又不太一样:数据库连接密码要存储在数据访问客户端,但要防止管理员以外的人员获取;而系统登录密码要存储在数据库中,要防止用户(尤其是管理员)获取其他人员的密码。针对它们各自的特征,我打算:对于前者,
- 【OpenCV-Python】——哈里斯/Shi-Tomas角检测&FAST/SIFT/ORB特征点检测&暴力/FLANN匹配器&对象查找
柯宝最帅
OpenCV学习计算机视觉人工智能
目录前言:1、角检测1.1哈里斯角检测1.2优化哈里斯角1.3Shi-Tomasi角检测2、特征点检测2.1FAST特征点检测2.2SIFT特征检测2.3ORB特征检测3、特征匹配3.1暴力匹配器3.2FLANN匹配器4、对象查找总结:前言:图像的特征是指图像中具有独特性和易识别性的区域,如角和边缘等。提取特征并对其进行描述,便于图像匹配和搜索。1、角检测1.1哈里斯角检测cv2.conerHar
- 计算机视觉——SIFT特征提取与检索算法
-shiba-
计算机视觉算法sift算法
计算机视觉——SIFT特征提取与检索算法1.基本介绍1.1算法特点1.2检测步骤2.基本原理2.1关键点2.2尺度空间2.3高斯模糊2.3.1高斯函数2.3.2高斯模糊2.3.3高斯金字塔2.4DOG函数2.4.1DOG函数的2.5关键点描述及匹配3.实验以及总结3.1实验数据集3.2提取图片SIFT特征,并展示特征点3.2.1代码3.2.2结果展示(选取)3.3计算两张图片SIFT特征匹配结果3
- SolidWorks速成教程P3-3【零件 | 第三节】——草图绘制面&实线与构造线的区别
阿齐Archie
SolidWorks速成教程3dSolidWorks
经过了前面的特征学习后,是不是感觉对SolidWorks越来越熟悉了?不过发现,SolidWorks速成这套教程,对于一些基础问题,还是需要解释得更详细一些,所以在这节再补充一下草图绘制面&实线与构造线的区别。目录1.草图绘制面2.实线与构造线的区别1.草图绘制面之前绘制的草图,我们要么绘制在基准面上,要么绘制在实体的表面上。这两种面都有同样的特性,它们都有确定的位置,还有它们都是平面。先说说这第
- 超火的Deepseek的MOE架构是什么?
魔王阿卡纳兹
大模型知识札记架构DeepSeekMoE大模型
DeepSeek的MOE(MixtureofExperts,混合专家)架构是一种基于专家模型(MixtureofExperts)的深度学习框架,旨在通过动态选择和激活部分专家模块来提高计算效率和模型性能。以下是对其核心特点和工作原理的详细介绍:1.核心概念与架构MOE架构的基本思想是将模型划分为多个“专家”模块,每个专家专注于处理特定类型的任务或数据特征。在推理时,通过门控机制(GatingMec
- 目标检测代码示例(基于Python和OpenCV)
matlab_python22
计算机视觉
引言目标检测是计算机视觉领域中的一个核心任务,其目标是在图像或视频中定位和识别特定对象。随着技术的发展,目标检测算法不断演进,从传统的基于手工特征的方法到现代的深度学习方法,再到基于Transformer的架构,目标检测技术已经取得了显著的进步。本文将总结和对比几种主要的目标检测算法,探讨它们的优势、劣势和适用场景。1.目标检测算法分类1.1单阶段检测(One-Stage)与双阶段检测(Two-S
- CentOS7 部署安装ClickHouse
zhua.er
ClickHouse数据库ClickHouse
一、什么是ClickHouseClickHouse是俄罗斯的Yandex于2016年开源的列式存储数据库(DBMS),使用C++语言编写,主要用于在线分析处理查询(OLAP),能够使用SQL查询实时生成分析数据报告。OLAP场景需要在大型数据集上对具有以下特征的复杂分析查询进行实时响应:数据集可以是巨大的——数十亿或数万亿行数据组织在包含多列的表中只选择少数几列来回答任何特定的查询必须以毫秒或秒为
- Python+Appium+POM实现APP端自动化测试
测软件的小bug
python自动化开发语言
1.POM及POM设计原理POM(pageobjectmodel)页面对象模型,主要应用于UI自动化测试框架的搭建,主流设计模式之一,页面对象模型:结合面向对象编程思路:把项目的每个页面当做一个对象进行编程2.POM一般分为四层第一层:basepage层:描述每个页面相同的属性及行为第二层:pageobject层(每个的独有特征及独有的行为)第三层:testcase层(用例层,描述项目业务流程)第
- 发文新思路!双通道CNN的惊人突破,准确率接近100%!
沃恩智慧
深度学习人工智能cnn人工智能神经网络
双通道CNN作为一种创新的卷积神经网络架构,正引领深度学习领域的新趋势。其核心优势在于并行卷积层设计,能够同时处理更多特征信息,从而显著提升模型的特征表示能力和识别精度。这种架构不仅提高了计算效率,还有效降低了过拟合风险,使其在复杂视觉任务中表现卓越。例如,最新的研究提出了一种名为DDTransUNet的混合网络,结合了Transformer和CNN的优势,通过双分支编码器和双重注意力机制,有效解
- matlab 代码通过有限差分法模拟了二维非稳态导热问题,并将初始时刻、最终时刻的温度分布以及温度场随时间的变化进行了可视化展示
go5463158465
算法matlabmatlab算法开发语言
clc;clearall;closeall;xlength=1;%x方向长度ylength=1;%y方向长度a=1e-4;%导温系数nx=15;%x方向网格数目ny=15;%y方向网格数目deltax=xlength/nx;%x方向单个网格长度deltay=ylength/ny;%y方向单个网格长度t=1600;%总时间nt=150;%时间步长deltat=t/nt;%时间步%给网格点编号,定义边
- 程序员方法论系列:类为啥是类?class为啥是class?咱得唠明白!
FoyoDesigner
程序员方法论java程序人生改行学it
类到底是啥玩意儿?咱程序员天天写类(class),可类到底是啥玩意儿?当年学Java的时候,老师说过一句话:“类是对代码的建模单位。”这话听着挺高大上,但啥是“建模”?咱那会儿也是一脸懵。多年后的今天,咱终于琢磨明白了:类是对现实世界的抽象映射,是一种建模方式。类的构成:属性、方法、构造器说到类,咱得先唠唠它的构成。类一般由三部分组成:1.属性:描述对象的特征,比如椅子的颜色、腿的数量。2.方法:
- 无人机技术全解析:从军事靶机到低空经济新引擎
UAV_ckesc
无人机
一、无人机定义与监管体系无人机(UnmannedAerialVehicle,UAV)是指通过无线电遥控设备或自主程序控制装置操纵的无人驾驶飞行器。其核心特征包括:无驾驶舱设计:搭载自动驾驶仪、程序控制装置等设备实现自主飞行分级管理体系:中国民航局将116kg以上无人机及4600m³以上飞艇纳入融合空域管理,微型航拍器由行业协会自治二、百年发展历程1.军事起源阶段(1914-1990)1914年:英
- java面试必背的基础知识点,有你没记住的嘛?
小虾米啊
java面试java-ee
一、corejava阶段1.理解面向对象的含义及其三大特征(继承,封装,多态)封装:使属性(特征)私有化,外部不能直接访问,需要访问属性,为外部提供公开的方法(行为)进行访问。继承:是一种是的关系,子类对父类进行扩展,对父类的复用,java只允许单继承。多态:一种事物多种形态,对象的多态,把一个对象复制给不同的引用方法的多态,重写重载。2.Java是单继承多实现的理解抽象类和接口的区别,了解四个访
- 【人工智能】临时抱佛脚准备明天的人工智能考试,试题与答案汇总
奋力向前123
人工智能人工智能
博主明天参加人工智能相关知识点的考试,于是今天临时抱佛脚从网上找些人工智能相关的试题熟悉熟悉,但愿明天考试能顺利通过,试题与答案汇总简答题解释什么是“过拟合”,并给出一种防止过拟合的方法。过拟合:指模型在训练数据上表现非常好,但在未见过的测试数据上表现很差,即模型学习到了训练数据中的噪声或偶然特征。防止方法:一种常见的方法是正则化(如L1和L2正则化)选择题人工智能的定义中
- 【收藏不迷路】380种群智能优化算法-Matlab代码免费获取(截至2025.2.14)
88号技师
智能优化算法算法matlab优化算法人工智能
群智能优化算法可以作为很好的工具来解决许多实际问题,如特征选择、图像分割、医学诊断,经济排放调度问题,植物病害识别,工程设计,PID优化控制,设备故障诊断,机器学习模型参数整定等等。在这个领域,有一个理论:没有免费午餐(NoFreeLunch,NFL)理论。它从逻辑上证明了不存在最适合解决所有优化问题的元启发式算法。换句话说,特定的元启发式可能在一组问题上显示出非常有希望的结果,但相同的算法可能在
- 三角测量——用相机运动估计特征点的空间位置
徐行tag
视觉SLAM数码相机人工智能视觉SLAM
引入使用对极约束估计了相机运动后,接下来利用相机运动估计特征点的空间位置,使用的方法就是三角测量。三角测量和对极几何中的对极几何约束描述类似:z2x2=R(z1x1)+tz_2x_2=R(z_1x_1)+tz2x2=R(z1x1)+t经过对极约束的求解,现在已知R,t,我们想求解两个特征点的深度z1,z2。(在单目相机模型中,深度被抹去了,因此若想建图需要求解‘z’)那么先对上式两侧左乘一个x2∧
- 模糊规则优化matlab,遗传算法优化模糊pid控制规则
weixin_39619270
模糊规则优化matlab
用遗传算法优化模糊控制规则,有部分代码,不懂计算适应度那块调用子函数,子函数要怎么写?以及M程序如何和simulink相互调用?clearall;closeall;b=newfis('yichuan');b=addvar(b,'input','e',[-3,3]);%Parametereb=addmf(b,'input',1,'NB','zmf',[-3,-1]);b=addmf(b,'input
- 基于Matlab实现六自由度机械臂正逆运动仿真(源码)
Matlab仿真实验室
Matlab仿真实验1000例matlab开发语言六自由度机械臂正逆运动仿真
在机器人技术领域,六自由度机械臂是一种广泛应用的设备,它可以实现空间中的位置和姿态控制。本项目聚焦于六自由度机械臂的正逆运动学仿真,利用MATLAB2016b作为开发工具,旨在深入理解并掌握机械臂的工作原理和运动控制。正运动学是研究机械臂从关节角度到末端执行器位姿之间关系的数学模型。它通过输入关节变量(即各个关节的角度),计算出末端执行器在空间中的位置和方向。通常会构建一个数学模型,如笛卡尔坐标系
- 【一起看花书1.3】——第5章 机器学习基础
应有光
基础知识机器学习人工智能深度学习
先验是“知识”,是合理的假设本文内容对应于原书的5.7-5.11共5小节内容,其中知识性、结论性的内容偏多,也加入了点个人见解。目录:5.7监督学习5.8无监督学习5.9随机梯度下降5.10构建机器学习算法5.11深度学习发展的动力5.7监督学习监督学习,本质上是复杂函数的拟合,即给定特征xxx,我们需要得到标签yyy,这不就是求一个函数的拟合嘛?线性回归是比较简单的,从高代、概率论就可以理解,甚
- Spring Boot 框架知识汇总
Bao_Lee
Java主要技术栈springboot后端java
1、什么是SpringBoot?通过SpringBoot,可以轻松地创建独立的,基于生产级别的Spring的应用程序,您可以“运行"它们。大多数SpringBoot应用程序需要最少的Spring配置,集成了大量常用的第三方库配置,使得这些库在SpringBoot应用中几乎可以零配置地开箱即用。2、SpringBoot的特征?◆创建独立的Spring应用程序,SpringBoot应用程序可以作为独立
- 使⽤MATLAB进⾏⽬标检测
唐BiuBiu
机器学习matlab开发语言目标检测深度学习
目录数据准备定义模型并训练用测试集评估性能推理过程⼀⾏代码查看⽹络结构⼀⾏代码转onnx结语⼈⽣苦短,我⽤MATLAB。Pytorch在深度学习领域占据了半壁江⼭,最主要的原因是⽣态完善,⽽且api直观易⽤。但谁能想到现在MATLAB⽤起来⽐Pytorch还好⽤。从数据集划分到训练,再到性能验证和画图,仅仅使⽤了⼏⼗⾏代码。炼丹师们终于可以解放编码时间,把⾃⼰的精⼒放在摸⻥(划掉)算法本身上了。下
- 格拉姆角场(GAF)将一维序列转化为图像
开发小途
图像处理
格拉姆角场(GramianAngularField,GAF)是一种将一维时间序列数据转换为二维图像表示的有效方法。以下是关于格拉姆角场(GAF)的详细解释,包括其原理、步骤以及优势和应用:一、原理格拉姆角场通过将一维时间序列数据中的每个数据点视为向量空间中的一个点,并计算这些点之间夹角的余弦值,进而将这些余弦值映射到二维图像的像素上,从而生成能够反映时间序列动态和周期性特征的图像。二、步骤数据预处
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l