- 数据结构与算法领域贪心算法的深度剖析
AI天才研究院
ChatGPT实战计算AgenticAI实战贪心算法算法ai
数据结构与算法领域贪心算法的深度剖析关键词:贪心算法、最优子结构、贪心选择性质、动态规划、贪心策略、时间复杂度、算法设计摘要:本文从贪心算法的核心概念出发,系统剖析其数学原理、算法设计模式及工程实践方法。通过对比贪心算法与动态规划的差异,揭示贪心选择性质和最优子结构的本质联系。结合活动选择、最小生成树、最短路径等经典案例,详细阐述贪心策略的构建过程与正确性证明方法。最后通过工业级项目实战,展示贪心
- 最小生成树算法的解题思路与 C++ 算法应用
Aobing_peterJr
OI算法分析算法c++
一、最小生成树算法针对问题类型及概述先来简要陈述一下树的概念:一个由NNN个点和N−1N-1N−1条边组成的无向连通图。由此,我们可以得知生成树算法的概念:在一个NNN个点的图中找出一个由N−1N-1N−1条边组成的树。具体来说,我们是在一个图G(N,M)G(N,M)G(N,M)中找到一个生成树G(N,N−1)G(N,N-1)G(N,N−1),在生成树G(N,N−1)G(N,N-1)G(N,N−1
- 贪心算法详解:理解贪心算法看这一篇就够了
爪哇学长
Java编程基础及进阶贪心算法算法javapython
文章目录1.贪心算法的基础理论1.1什么是贪心选择性质1.2证明贪心选择性质2.设计步骤2.1定义问题和目标2.2确定数据结构2.3排序和选择策略2.4迭代与决策2.5终止条件3.实例详解3.1活动选择问题3.2分数背包问题3.3最小生成树(Kruskal算法)1.贪心算法的基础理论1.1什么是贪心选择性质贪心选择性质是指一个全局最优解可以通过一系列局部最优的选择构建出来。这意味着在做出每个选择时
- 计算机数据结构图知识点,2011考研计算机数据结构复习重点解析:图的应用
夏欢Vivian
计算机数据结构图知识点
图是数据结构科目中难度最大的重点章节,在这两年的考试中也作为重点来考查。图这部分内容概念多、算法多、难度大。这就需要大家深刻理解每个知识点,多做练习,抓住规律,才能很好地解答这部分试题。图这部分要求大家掌握图的定义、特点、存储结构、遍历、图的基本应用等内容。图这部分的重点和难点是图的基本应用,这在09年和10年的考试中有所体现。图的基本应用包括:最小生成树、最短路径、拓扑排序、关键路径等。09年考
- 贪心算法经典问题
弥彦_
c++算法c++
目录贪心思想一、Dijkstra最短路问题问题描述:贪心策略:二、Prim和Kruskal最小生成树问题Prim算法:Kruskal算法:三、Huffman树问题问题描述:贪心策略:四、背包问题问题描述:贪心策略:五、硬币找零问题问题描述:贪心策略:六、区间合并问题问题描述:贪心策略:七、选择不相交区间问题问题描述:贪心策略:八、区间选点问题问题描述贪心策略九、区间覆盖问题问题描述:贪心策略:十、
- 大厂机试题解法笔记大纲+按知识点分类+算法编码训练
二分法部门人力分配数据最节约的备份方法项目排期食堂供餐矩阵匹配书籍叠放爱吃蟠桃的孙悟空深度优先搜索(DFS)欢乐的周末寻找最大价值矿堆可组成网络的服务器连续出牌数量图像物体的边界核算检测启动多任务排序无向图染色广度优先搜索(BFS)欢乐的周末快递员的烦恼亲子学习跳马启动多任务排序电脑病毒感染图5G网络建设(最小生成树)城市聚集度问题(树形DP、并查集)电脑病毒感染(Dijkstra算法)启动多任务
- Prim算法实现 -- 结合优先级队列
NLP_wendi
数据结构与算法Prim算法
什么是Prim算法?classPrim2:"""P算法最小生成树算法MSTMinimalSpanningTree保证整个拓扑图的所有路径之和最小"""def__init__(self,graph):n=len(graph)#存放横切边self.min_heap=[]#类似于visited数组,记录节点是否在mst中self.inMst=[False]*nself.weightSum=0#三元组se
- 数据结构——图(c)
阿笙_1202
数据结构图论数据结构算法
数据结构——图(c)文章目录数据结构——图(c)一、基本概念和术语1.图2.图的分类3.相关定义4.几种特殊形态的图二、图的存储结构1.邻接矩阵(顺序存储)2.邻接表(顺序+链式存储)3.十字链表-存储有向图4.邻接多重表-存储无向图5.邻接矩阵与邻接表对比三、图的基本操作四、图的遍历1.深度优先搜索(DFS)-辅助栈2.广度优先搜素(BFS)-辅助队列五、图的应用1-最小生成树0.最小代价生成树
- 贪心算法题实战详解
极致人生-010
贪心算法算法
文章目录例题1:活动安排问题例题2:货币找零问题例题3:分数背包问题(部分背包问题)例题4:最小生成树问题(Prim算法)例题5:哈夫曼编码例题6:活动选择问题例题7:硬币找零问题贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(局部最优)的选择,以期望通过一系列局部最优决策达到全局最优解的算法。请注意,贪心算法并不总是能得到全局最优解,但在某些特定问题上非常有效。下面通过几个实战例题来详
- Minimum/Maximum Spanning Tree/Forest
Razhme
算法初步系列
MST问题。对于一个有权无向图,使其原有连通块保持连通性并形成树,同时边权之和最小。换一种说法,最小生成树或者最小生成森林。两个算法一个推论。Kruskal'sAlgorithm基于贪心。将边排序,从最短边开始,若添加了此边,两个不相连的连通块相连了,就添加,否则看下一条。添加到边数为点数-1为止。用并查集检验是否连通。注意Kruskal的原理为,对于图中任意一个点x,对于x点连出去的所有边,边权
- 数据结构与算法学习笔记----Kruskal算法
明月清了个风
数据结构与算法笔记(基础课)算法学习笔记
数据结构与算法学习笔记----Kruskal算法@@author:明月清了个风@@firstpublishtime:2024.12.21ps⭐️这也是一个思想比较简单的算法,只写了基本思想,具体的可以看代码理解一下Kruskal算法Kruskal算法同样是一种基于贪心策略的最小生成树求解算法,另一种是上一篇中的Prim算法。基本思想将所有的边按边长从小到大排序。遍历所有边,判断每条边所连接的两个节
- 图论基础:广度优先搜索与深度优先搜索
夏曦安
图论广度优先搜索深度优先搜索最小生成树算法
图论基础:广度优先搜索与深度优先搜索图论作为计算机科学中重要的数学分支,广泛应用于网络流、最短路径、网络设计等领域。在图论的世界中,图的遍历是基础中的基础,它涉及到许多图算法的设计和实现。本文将重点探讨两种基础的图遍历算法——广度优先搜索(BFS)和深度优先搜索(DFS),以及最小生成树(MST)的相关算法。广度优先搜索(BFS)广度优先搜索是图遍历的一种方法,它从图中的一个顶点开始,尽可能宽广地
- ruskal 最小生成树算法
19要加油
算法
https://www.lanqiao.cn/problems/17138/learning/并查集+ruskal最小生成树算法Kruskal算法是一种用于在加权无向连通图中寻找最小生成树(MST)的经典算法。其核心思想是基于贪心策略,通过按边权从小到大排序并逐步选择边,确保最终形成的树满足以下条件:包含图中所有顶点(即生成树)。边权之和最小(即最小性)。不形成环路(确保是树结构)。算法步骤排序边
- Leetcode刷题 | Day61_图论07
freyazzr
leetcode图论算法数据结构c++
一、学习任务最小生成树——prim算法代码随想录最小生成树——kruskal算法代码随想录Kruskal与prim的关键区别在于,prim维护的是节点的集合,而Kruskal维护的是边的集合。在节点数量固定的情况下,图中的边越少,Kruskal需要遍历的边也就越少。而prim算法是对节点进行操作的,节点数量越少,prim算法效率就越优。边数量较少为稀疏图,接近或等于完全图(所有节点皆相连)为稠密图
- 软考高级《系统架构设计师》知识点(十八)
Ritchie:)
数学与经济管理图论应用最小生成树有两种方法:普里姆算法和克鲁斯卡尔算法,实际计算建议采用克鲁斯卡尔算法。克鲁斯卡尔算法:将图中所有的边按权值从小到大排序,从权值最小的边开始选取,判断是否为安全边(即不构成环),直至选取了n-1条边,构成了最小生成树。最小生成树并不唯一,但权值之和都相等且最小,只要求出一个就可以。最短路径计算从起点到终点的最短路径,注意与关键路径截然相反,不要混淆。方法:从起点开始
- Java语言常用的算法
TPBoreas
算法java算法开发语言
Java语言常用的算法包括:排序算法:冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序等。查找算法:顺序查找、二分查找、哈希查找等。字符串匹配算法:暴力匹配、KMP算法、Boyer-Moore算法等。图论算法:最短路径算法、最小生成树算法、拓扑排序等。动态规划算法:背包问题、最长公共子序列、最长上升子序列等。贪心算法:最小生成树、单源最短路径等。分治算法:快速排序、归并排序等。网
- 搜索与图论--Floyd/Prim/Kruskal
Spike_Q
算法学习图论算法数据结构c++
目录1.Floyd求最短路输入格式输出格式数据范围输入样例:输出样例:代码展示:2.Prim算法求最小生成树输入格式输出格式数据范围输入样例:输出样例:代码展示:3.Kruskal算法求最小生成树输入格式输出格式数据范围输入样例:输出样例:代码展示:WATER~1.Floyd求最短路给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。再给定k个询问,每个询问包含两个整数x和y,表
- 普利姆算法-最短路径问题
南方下小雨
算法数据结构
packagedemo28;importjava.util.Arrays;//普利姆算法解决最小生成树问题publicclasssmallTree{publicstaticvoidmain(String[]args){char[]data=newchar[]{'A','B','C','D','E','F','G'};intverx=data.length;int[][]weight=newint[
- 2025年第十六届蓝桥杯省赛B组Java题解【完整、易懂版】
大熊计算机
赛事/证书蓝桥杯java职场和发展
2025年第十六届蓝桥杯省赛B组Java题解题型概览与整体分析题目编号题目名称题型难度核心知识点通过率(预估)A逃离高塔结果填空★☆☆数学规律、模运算95%B消失的蓝宝结果填空★★★同余定理、中国剩余定理45%C电池分组编程题★★☆异或运算性质70%D魔法科考试编程题★★★素数筛、集合去重60%E爆破编程题★★★☆最小生成树、几何计算40%F数组翻转编程题★★☆贪心、数学分析55%G移动距离结果填
- 算法笔记.kruskal算法求最小生成树
xin007hoyo
算法笔记图论
题目:(来源:AcWing)给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。给定一张边带权的无向图G=(V,E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。由V中的全部n个顶点和E中n−1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的
- 算法笔记.prim算法
xin007hoyo
算法笔记图论
题目:给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。给定一张边带权的无向图G=(V,E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。由V中的全部n个顶点和E中n−1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。输入格式第
- 青少年编程与数学 02-018 C++数据结构与算法 16课题、贪心算法
明月看潮生
编程与数学第02阶段青少年编程c++贪心算法编程与数学算法
青少年编程与数学02-018C++数据结构与算法16课题、贪心算法一、贪心算法的基本概念定义组成部分二、贪心算法的工作原理三、贪心算法的优点四、贪心算法的缺点五、贪心算法的应用实例(一)找零问题问题描述:贪心策略:示例代码:解释:(二)活动安排问题问题描述:贪心策略:示例代码:解释:(三)霍夫曼编码问题描述:贪心策略:示例代码:解释:(四)最小生成树(Kruskal算法)问题描述:贪心策略:示例代
- C++ 解决一个简单的图论问题 —— 最小生成树(以 Prim 算法为例)
potato_potato_123
C/C++算法图论最小生成树prim算法
使用C++解决一个简单的图论问题——最小生成树(以Prim算法为例),并且使用Graphviz库来生成结果图。在图论中,“边权之和最小”是最小生成树(MST)的核心目标,其含义和背景可以从以下几个方面解释:一、基础定义:什么是“边权之和”?边权:图中每条边的权重(Weight),可以代表实际问题中的成本、距离、时间、容量等量化指标。边权之和:对于一个子图(如生成树),将其中所有边的权重相加得到的总
- 算法设计与分析7(贪心算法)
songx_99
算法设计与分析算法
Prim算法(寻找最小生成树)用途:Prim算法是一种贪心算法,用于在加权无向图中寻找最小生成树(MST),即能够连接图中所有顶点且边的权重之和最小的子图。基本思路:从图中任意一个顶点v开始,将其加入到最小生成树的顶点集合S中。不断从与S中顶点相邻的边中选择一条权重最小的边,将这条边连接的另一个顶点加入到S中。重复上述步骤,直到图中所有顶点都被加入到S中,此时得到的子图就是最小生成树。Dijkst
- kuangbin 最小生成树专题 - POJ - 2421 Constructing Roads (朴素 Prim算法 模板题)
会划水才能到达彼岸
最小生成树专题kuangbin题单算法图论c++数据结构树结构
kuangbin最小生成树专题-POJ-2421ConstructingRoads(朴素Prim算法模板题)英文版Clickhere~~意译版Clickhere~~总题单week3[kuangbin带你飞]题单最小生成树+线段树Clickhere~~https://blog.csdn.net/m0_46272108/article/details/108980362英文版Clickhere~~De
- Objective-C实现prim普里姆算法(附完整源码)
源代码大师
objective-c算法ios
Objective-C实现prim普里姆算法Prim算法是一种用于寻找加权无向图的最小生成树(MinimumSpanningTree,MST)的贪心算法。它的基本思路是从一个起始节点开始,逐步将最小边加入到生成树中,直到所有节点都被包括在内。下面是一个使用Objective-C实现Prim算法的完整源码示例。Objective-C完整源码#import@interfaceGraph:NSObjec
- 图论——最小生成树:Prim算法及优化、Kruskal算法,及时间复杂度比较
avq94452
javac/c++
转载自——》https://www.cnblogs.com/ninedream/p/11203704.html最小生成树:一个有n个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有n个结点,并且有保持图连通的最少的边。简单来说就是有且仅有n个点n-1条边的连通图。而最小生成树就是最小权重生成树的简称,即所有边的权值之和最小的生成树。最小生成树问题一般有以下两种求解方式。一、Prim算法
- 图的最小生成树--Prim算法与Kruskal算法
MinBadGuy
数据结构与算法图论primkruskal
1.相关概念1.1生成树概念所谓一个图的生成树是一个极小连通子图,它含有图中全部的n个顶点,但只有足以构成一棵树的n-1条边。从上述定义可知,如果一个图有n个顶点和小于n-1条边,则是非连通图,如果它多余n-1条边,必定构成一个环。注意:(1)一个图可以有多棵不同的生成树;(2)具有n-1条边并不一定是生成树。1.2最小生成树给定一个连通网,在该往的所有生成树中,使得各边权值之和最小的那棵生成树称
- 图论---Kruskal(稀疏图)
快乐的小涵
图论c++算法数据结构
O(m*logn)。1,将所有边按权重从小到大排序,调用系统的sort()2,枚举每条边的a,b,权重if(a、b不联通)就将这条边加入集合中//最小生成树—Kruskal算法(稀疏图)#include#includeusingnamespacestd;constintN=200010;intn,m;intp[N];//并查集中的p数组structEdge{inta,b,w;//重载>n>>m;f
- 图论应用解析:从Dijkstra到Floyd算法
健康和谐男哥
图论最短路径Dijkstra算法Floyd算法算法优化
图论应用解析:从Dijkstra到Floyd算法背景简介在计算机科学领域,图的应用无处不在,尤其是在解决最短路径问题上。第7章深入讲解了图论中的一些经典应用,包括最短路径、最小生成树、拓扑排序和关键路径等。本篇博文将重点解读最短路径问题中的两个重要算法——Dijkstra算法和Floyd算法。最短路径问题的Dijkstra算法算法简介Dijkstra算法是由荷兰计算机科学家迪科斯彻提出的,旨在解决
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo