按照博客所示的步骤,生成配置文件,并进行修改,配置文件的各个type都是已经注册好的,可以根据自己的需要进行修改。其中,所有的type,都可以在mmsegmentation\mmseg\models中找到。
上一篇博客 MMLAB系列:mmsegmentation的使用_樱花的浪漫的博客-CSDN博客数据可以使用labelme进行数据标注,labelme还提供了数据集格式转换脚本,可以将labelme数据集格式转换为voc数据集格式转换后:JPEGImages为图片,SegmentationClassPNG为标签。https://blog.csdn.net/qq_52053775/article/details/126796659 如下所示,选择的U-NET由ecoder-decoder,decode_head,auxiliary_head组成
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoder',
pretrained=None,
backbone=dict(
type='UNet',
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, True),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1),
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='SyncBN', requires_grad=True),
act_cfg=dict(type='ReLU'),
upsample_cfg=dict(type='InterpConv'),
norm_eval=False),
decode_head=dict(
type='FCNHead',
in_channels=64,
in_index=4,
channels=64,
num_convs=1,
concat_input=False,
dropout_ratio=0.1,
num_classes=2,
norm_cfg=dict(type='SyncBN', requires_grad=True),
align_corners=False,
loss_decode=[
dict(
type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0),
dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)
]),
auxiliary_head=dict(
type='FCNHead',
in_channels=128,
in_index=3,
channels=64,
num_convs=1,
concat_input=False,
dropout_ratio=0.1,
num_classes=2,
norm_cfg=dict(type='SyncBN', requires_grad=True),
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
train_cfg=dict(),
test_cfg=dict(mode='slide', crop_size=(64, 64), stride=(42, 42)))
dataset_type = 'PascalContextDataset'
data_root = 'E:/MMLAB/mmsegmentation/data/my_cell_voc'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
img_scale = (584, 565)
crop_size = (64, 64)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(584, 565), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=(64, 64), cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size=(64, 64), pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(584, 565),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=3,
workers_per_gpu=1,
train=dict(
type='PascalContextDataset',
data_root='E:/MMLAB/mmsegmentation/data/my_cell_voc/',
img_dir='JPEGImages',
ann_dir='SegmentationClassPNG',
split='train.txt',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(
type='Resize',
img_scale=(584, 565),
ratio_range=(0.5, 2.0)),
dict(
type='RandomCrop', crop_size=(64, 64), cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size=(64, 64), pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]),
val=dict(
type='PascalContextDataset',
data_root='E:/MMLAB/mmsegmentation/data/my_cell_voc/',
img_dir='JPEGImages',
ann_dir='SegmentationClassPNG',
split='val.txt',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(584, 565),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]),
test=dict(
type='PascalContextDataset',
data_root='E:/MMLAB/mmsegmentation/data/my_cell_voc/',
img_dir='JPEGImages',
ann_dir='SegmentationClassPNG',
split='test.txt',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(584, 565),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]))
log_config = dict(
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
cudnn_benchmark = True
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
optimizer_config = dict()
lr_config = dict(policy='poly', power=0.9, min_lr=0.0001, by_epoch=False)
runner = dict(type='IterBasedRunner', max_iters=40000)
checkpoint_config = dict(by_epoch=False, interval=4000)
evaluation = dict(interval=4000, metric='mDice', pre_eval=True)
work_dir = './work_dirs/fcn_unet'
gpu_ids = [0]
auto_resume = False
我们找到模型定义的类,mmseg/models/segmentors/encoder_decoder.py,可以看到整个encoder_decoder模型主要由backbone,neck,和head组成
模型选取的是u-net,u-net 比较简单,左侧不断的进行下采样提取特征,右侧进行上采样,同时融合左侧同一级别的特征,还原细节特征。详见我的博客:
U-net详解_樱花的浪漫的博客-CSDN博客_u-net详解
对于输出head,指定的是FC_HEAD,可以指定特定的特征图,但是需要指定输入的channels个数
同时,模型还有一层辅助输出,对训练进行深度监督
通过修改生成的配置文件,我们可以对模型进行修改,如下所示,我们将backbone修改为visiontransformer,同时添加FPN作为neck。如下所示,我们只需要指定mmseg提供的各种模块,并将参数写入字典中,值得注意的是,我们需要保证各个模块的通道数等能够衔接。
对于VIT的代码分析,请参考我的博客:
VIT 源码详解_樱花的浪漫的博客-CSDN博客_vit源码
backbone=dict( type='VisionTransformer', img_size=(96, 96), patch_size=16, in_channels=3, embed_dims=768, num_layers=12, num_heads=12, mlp_ratio=4, out_indices=(2, 3, 5, 8, 11), qkv_bias=True, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, with_cls_token=True, norm_cfg=dict(type='LN', eps=1e-06), act_cfg=dict(type='GELU'), norm_eval=False, interpolate_mode='bicubic'), neck=dict( type='FPN', in_channels=[768, 768, 768, 768, 768], out_channels=64, num_outs=5), decode_head=dict( type='FCNHead', in_channels=64, in_index=4, channels=64, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=2, norm_cfg=dict(type='BN', requires_grad=True), align_corners=False, loss_decode=dict(type='FocalLoss', use_sigmoid=True, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=64, in_index=3, channels=64, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=2, norm_cfg=dict(type='BN', requires_grad=True), align_corners=False, loss_decode=dict(type='FocalLoss', use_sigmoid=True, loss_weight=0.4)), train_cfg=dict(), test_cfg=dict(mode='slide', crop_size=(96, 96), stride=(42, 42)))