MMLAB系列:mmsegmentation基于u-net的各种策略修改

1.配置文件解读

        按照博客所示的步骤,生成配置文件,并进行修改,配置文件的各个type都是已经注册好的,可以根据自己的需要进行修改。其中,所有的type,都可以在mmsegmentation\mmseg\models中找到。
上一篇博客 MMLAB系列:mmsegmentation的使用_樱花的浪漫的博客-CSDN博客数据可以使用labelme进行数据标注,labelme还提供了数据集格式转换脚本,可以将labelme数据集格式转换为voc数据集格式转换后:JPEGImages为图片,SegmentationClassPNG为标签。https://blog.csdn.net/qq_52053775/article/details/126796659        如下所示,选择的U-NET由ecoder-decoder,decode_head,auxiliary_head组成

norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
    type='EncoderDecoder',
    pretrained=None,
    backbone=dict(
        type='UNet',
        in_channels=3,
        base_channels=64,
        num_stages=5,
        strides=(1, 1, 1, 1, 1),
        enc_num_convs=(2, 2, 2, 2, 2),
        dec_num_convs=(2, 2, 2, 2),
        downsamples=(True, True, True, True),
        enc_dilations=(1, 1, 1, 1, 1),
        dec_dilations=(1, 1, 1, 1),
        with_cp=False,
        conv_cfg=None,
        norm_cfg=dict(type='SyncBN', requires_grad=True),
        act_cfg=dict(type='ReLU'),
        upsample_cfg=dict(type='InterpConv'),
        norm_eval=False),
    decode_head=dict(
        type='FCNHead',
        in_channels=64,
        in_index=4,
        channels=64,
        num_convs=1,
        concat_input=False,
        dropout_ratio=0.1,
        num_classes=2,
        norm_cfg=dict(type='SyncBN', requires_grad=True),
        align_corners=False,
        loss_decode=[
            dict(
                type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0),
            dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)
        ]),
    auxiliary_head=dict(
        type='FCNHead',
        in_channels=128,
        in_index=3,
        channels=64,
        num_convs=1,
        concat_input=False,
        dropout_ratio=0.1,
        num_classes=2,
        norm_cfg=dict(type='SyncBN', requires_grad=True),
        align_corners=False,
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
    train_cfg=dict(),
    test_cfg=dict(mode='slide', crop_size=(64, 64), stride=(42, 42)))
dataset_type = 'PascalContextDataset'
data_root = 'E:/MMLAB/mmsegmentation/data/my_cell_voc'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
img_scale = (584, 565)
crop_size = (64, 64)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations'),
    dict(type='Resize', img_scale=(584, 565), ratio_range=(0.5, 2.0)),
    dict(type='RandomCrop', crop_size=(64, 64), cat_max_ratio=0.75),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PhotoMetricDistortion'),
    dict(
        type='Normalize',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        to_rgb=True),
    dict(type='Pad', size=(64, 64), pad_val=0, seg_pad_val=255),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(584, 565),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img'])
        ])
]
data = dict(
    samples_per_gpu=3,
    workers_per_gpu=1,
    train=dict(
        type='PascalContextDataset',
        data_root='E:/MMLAB/mmsegmentation/data/my_cell_voc/',
        img_dir='JPEGImages',
        ann_dir='SegmentationClassPNG',
        split='train.txt',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='LoadAnnotations'),
            dict(
                type='Resize',
                img_scale=(584, 565),
                ratio_range=(0.5, 2.0)),
            dict(
                type='RandomCrop', crop_size=(64, 64), cat_max_ratio=0.75),
            dict(type='RandomFlip', prob=0.5),
            dict(type='PhotoMetricDistortion'),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='Pad', size=(64, 64), pad_val=0, seg_pad_val=255),
            dict(type='DefaultFormatBundle'),
            dict(type='Collect', keys=['img', 'gt_semantic_seg'])
        ]),
    val=dict(
        type='PascalContextDataset',
        data_root='E:/MMLAB/mmsegmentation/data/my_cell_voc/',
        img_dir='JPEGImages',
        ann_dir='SegmentationClassPNG',
        split='val.txt',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(584, 565),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]),
    test=dict(
        type='PascalContextDataset',
        data_root='E:/MMLAB/mmsegmentation/data/my_cell_voc/',
        img_dir='JPEGImages',
        ann_dir='SegmentationClassPNG',
        split='test.txt',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(584, 565),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]))
log_config = dict(
    interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
cudnn_benchmark = True
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
optimizer_config = dict()
lr_config = dict(policy='poly', power=0.9, min_lr=0.0001, by_epoch=False)
runner = dict(type='IterBasedRunner', max_iters=40000)
checkpoint_config = dict(by_epoch=False, interval=4000)
evaluation = dict(interval=4000, metric='mDice', pre_eval=True)
work_dir = './work_dirs/fcn_unet'
gpu_ids = [0]
auto_resume = False

2.编码层  

        我们找到模型定义的类,mmseg/models/segmentors/encoder_decoder.py,可以看到整个encoder_decoder模型主要由backbone,neck,和head组成MMLAB系列:mmsegmentation基于u-net的各种策略修改_第1张图片 

        模型选取的是u-net,u-net 比较简单,左侧不断的进行下采样提取特征,右侧进行上采样,同时融合左侧同一级别的特征,还原细节特征。详见我的博客:

U-net详解_樱花的浪漫的博客-CSDN博客_u-net详解

对于输出head,指定的是FC_HEAD,可以指定特定的特征图,但是需要指定输入的channels个数

MMLAB系列:mmsegmentation基于u-net的各种策略修改_第2张图片

 同时,模型还有一层辅助输出,对训练进行深度监督

3.对模型进行修改 

        通过修改生成的配置文件,我们可以对模型进行修改,如下所示,我们将backbone修改为visiontransformer,同时添加FPN作为neck。如下所示,我们只需要指定mmseg提供的各种模块,并将参数写入字典中,值得注意的是,我们需要保证各个模块的通道数等能够衔接。

        对于VIT的代码分析,请参考我的博客:

VIT 源码详解_樱花的浪漫的博客-CSDN博客_vit源码 

backbone=dict(
    type='VisionTransformer',
    img_size=(96, 96),
    patch_size=16,
    in_channels=3,
    embed_dims=768,
    num_layers=12,
    num_heads=12,
    mlp_ratio=4,
    out_indices=(2, 3, 5, 8, 11),
    qkv_bias=True,
    drop_rate=0.0,
    attn_drop_rate=0.0,
    drop_path_rate=0.0,
    with_cls_token=True,
    norm_cfg=dict(type='LN', eps=1e-06),
    act_cfg=dict(type='GELU'),
    norm_eval=False,
    interpolate_mode='bicubic'),
neck=dict(
    type='FPN',
    in_channels=[768, 768, 768, 768, 768],
    out_channels=64,
    num_outs=5),
decode_head=dict(
    type='FCNHead',
    in_channels=64,
    in_index=4,
    channels=64,
    num_convs=1,
    concat_input=False,
    dropout_ratio=0.1,
    num_classes=2,
    norm_cfg=dict(type='BN', requires_grad=True),
    align_corners=False,
    loss_decode=dict(type='FocalLoss', use_sigmoid=True, loss_weight=1.0)),
auxiliary_head=dict(
    type='FCNHead',
    in_channels=64,
    in_index=3,
    channels=64,
    num_convs=1,
    concat_input=False,
    dropout_ratio=0.1,
    num_classes=2,
    norm_cfg=dict(type='BN', requires_grad=True),
    align_corners=False,
    loss_decode=dict(type='FocalLoss', use_sigmoid=True, loss_weight=0.4)),
train_cfg=dict(),
test_cfg=dict(mode='slide', crop_size=(96, 96), stride=(42, 42)))

你可能感兴趣的:(MMLAB,深度学习,人工智能,神经网络,算法)