- 使用DeepSeek R1大模型编写迅投 QMT 的量化交易 Python 代码
wtsolutions
qmt量化交易pythonqmtdeepseek量化交易代码生成
随着人工智能技术的迅猛发展,利用AI工具提升工作效率已成为现代开发者的重要手段。在使用deepseek官方网页生成迅投QMT代码的时候,deepseek给出的代码是xtquant代码,也就是miniqmt代码,并不是我们传统意义上说的大QMT可用的代码。因此,我们需要自建一个知识库,让deepseek根据我的知识库里面的知识,去帮我生成大QMT可用的交易代码。一、建立迅投QMT的知识库建立迅投QM
- GPU架构分类
大明者省
架构
一、NVIDIA的GPU架构NVIDIA是全球领先的GPU生产商,其GPU架构在图形渲染、高性能计算和人工智能等领域具有广泛应用。NVIDIA的GPU架构经历了多次迭代,以下是一些重要的架构:1.Tesla(特斯拉)架构(2006年发布)特点:NVIDIA推出的首个通用GPU计算架构,支持使用C语言进行GPU编程,标志着GPU开始从专用图形处理器转变为通用数据并行处理器。性能:具有128个流处理器
- 芯片的未来发展趋势
iccnewer
2024年,该行业将专注于AI/ML、RISC-V、量子、安全等发展趋势。今年年初,大多数人从未听说过生成式人工智能。现在整个世界都在竞相利用它,而这仅仅是个开始。量子计算、6G、智能基础设施等新市场领域专用处理正在加速对更快、更高效、更多数据的需求。与每隔几年等待下一个工艺节点的日子相比,未来几年的事件将与电话或汽车的引入一样重要。但可能不会只有一种创新技术,将会有很多技术一起以一种将让科技界惊
- 基于Python编程语言实现“机器学习”,用于车牌识别项目
我的sun&shine
Pythonpython机器学习计算机视觉
基于Python的验证码识别研究与实现1.摘要验证码的主要目的是区分人类和计算机,用来防止自动化脚本程序对网站的一些恶意行为,目前绝大部分网站都利用验证码来阻止恶意脚本程序的入侵。验证码的自动识别对于减少自动登录时长,识别难以识别的验证码图片有着重要的作用。对验证码图像进行灰度化、二值化、去离散噪声、字符分割、归一化、特征提取、训练和字符识别等过程可以实现验证码自动识别。首先将原图片进行灰度化处理
- Python程序设计(入门)
xyyykx
python开发语言
目录一丶Python概述二丶Python数据类型三丶常用的进制四丶字符串型五丶程序控制结构六丶组合数据类型一丶Python概述Python是一种高级编程语言,由GuidovanRossum于1991年开发并发布。它具有简洁、易读、易学的语法特点,被广泛应用于多个领域,包括软件开发、数据科学、人工智能、网络编程等。以下是Python的一些主要特点和优势:简单易学:Python的语法简洁明了,易于理解
- LLM:软件测试的颠覆性力量
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM:软件测试的颠覆性力量关键词:大语言模型(LLM)、软件测试、人工智能、测试自动化、测试效率、质量保证、测试革新1.背景介绍在当今快速发展的软件行业中,测试一直是确保产品质量的关键环节。随着人工智能技术的飞速进步,特别是大语言模型(LargeLanguageModels,简称LLM)的出现,软件测试领域正经历着前所未有的变革。LLM凭借其强大的自然语言处理能力和广泛的知识储备,正在重塑我们对
- 卷积神经网络Batch Normalization的作用
arron8899
cnnbatch人工智能
BatchNormalization的作用(通俗版)1.像“稳定器”一样校准每层输入想象你在烤多层蛋糕,每层蛋糕的烘烤温度不同(相当于神经网络的每一层数据分布不同)。没有BN时,烤箱温度忽高忽低,导致有的层烤焦(梯度爆炸),有的层不熟(梯度消失)。BN的作用相当于给每一层装了一个自动温度调节器,实时将输入数据调整到标准温度(均值为0,方差为1),保证每层都能均匀受热,训练更稳定。2.让模型训练“少
- DS/ML:数据科学技术之数据科学生命周期(四大层次+机器学习六大阶段+数据挖掘【5+6+6+4+4+1】步骤)的全流程最强学习路线讲解之详细攻略
一个处女座的程序猿
资深文章(前沿/经验/创新)DataScienceML数据科学数据科学的生命周期机器学习
DS/ML:数据科学技术之数据科学生命周期(四大层次+机器学习六大阶段+数据挖掘【5+6+6+4+4+1】步骤)的全流程最强学习路线讲解之详细攻略导读:本文章是博主在数据科学和机器学习领域,先后实战过几百个应用案例之后的精心总结,应该是完全覆盖了数据科学的整个生命周期及其各个阶段的要点。其中机器学习领域六大阶段更是在整个数据科学生命周期中扮演着极其重要的角色。同时,因为涉及到博主出书中出版社要求在
- 深入了解盘古大模型:技术、应用与未来
Hardess-god
Literaturereview人工智能
随着人工智能技术的迅猛发展,预训练大模型已成为AI领域最前沿、最热门的研究方向之一。近年来,中国自主研发的大模型之一——盘古模型(PanGuModel)逐渐进入公众视野,凭借其强大的性能和广泛的应用前景,引发了行业内外的广泛关注。什么是盘古大模型?盘古大模型是华为公司联合多家科研机构共同研发的超大规模预训练语言模型。该模型以中文数据为主进行训练,旨在推动中文自然语言处理(NLP)以及跨模态应用的技
- 【人工智能之大模型】阐述生成式语言模型的工作机理...(二)
985小水博一枚呀
大大大模型知识点人工智能语言模型自然语言处理机器学习神经网络
【人工智能之大模型】阐述生成式语言模型的工作机理…(二)【人工智能之大模型】阐述生成式语言模型的工作机理…(二)文章目录【人工智能之大模型】阐述生成式语言模型的工作机理...(二)前言4.代码逐行解释TransformerBlock类初始化前向传播GenerativeLM类初始化前向传播推理示例测试生成5.总结欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!祝所有的硕博生都能遇到好的导师!好的审稿
- 人工智能 - 通用 AI Agent 之 LangManus、Manus、OpenManus 和 OWL 技术选型
天机️灵韵
具身智能人工智能人工智能具身智能智能体
一、核心项目概览1.Manus(闭源通用AIAgent)定位:全球首个全流程自动化通用AIAgent,GAIA基准测试SOTA水平。核心能力:全流程自动化:从任务规划(如撰写报告)到执行(代码生成、表格制作)的端到端处理。智能纠错机制:基于沙箱环境的实时错误反思与调整(类似CodeAct技术)。云端依赖:需联网运行,集成浏览器操作、信息检索等工具。局限性:闭源且采用邀请制,二手市场邀请码溢价至数万
- 一切皆是映射:实现神经网络的硬件加速技术:GPU、ASIC(专用集成电路)和FPGA(现场可编程门阵列)
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
文章目录一切皆是映射:实现神经网络的硬件加速技术:GPU、ASIC(专用集成电路)和FPGA(现场可编程门阵列)1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.2.1GPU加速3.2.2ASIC加速3.2.3FPGA加速3.3算法优缺点GPUASICFPGA3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4.1数学模型构建4.2公式推导过
- 知识图谱中NLP新技术
魔王阿卡纳兹
知识图谱入门大数据治理与分析知识图谱自然语言处理人工智能
知识图谱与自然语言处理(NLP)的结合是当前人工智能领域的前沿方向,其技术发展呈现多维度融合与场景深化的特点。以下从核心技术突破、应用场景创新及未来趋势三个层面,系统梳理知识图谱中NLP的最新进展:一、核心技术突破基于预训练模型的图谱构建与增强预训练语言模型与知识嵌入融合:以BERT、KEPLER为代表的模型通过联合优化知识嵌入(KE)和语言建模目标,将知识图谱中的结构化知识融入预训练过程,显著提
- 掌握ChatGPT写代码的秘诀:开发者的完整指南
酷酷的崽798
机器学习chatgpt
文章目录前言:如何利用ChatGPT来写代码:一个深度指南1.ChatGPT的基本功能概述2.利用ChatGPT辅助代码编写的好处3.ChatGPT支持的编程语言4.如何向ChatGPT提问以获取最佳结果5.实际应用案例6.ChatGPT的局限性及其解决方法7.关于隐私和安全性的注意事项8.未来展望结论前言:如何利用ChatGPT来写代码:一个深度指南近年来,人工智能技术取得了飞跃性的进展,尤其是
- 给普通人看的深度学习说明书:用快递系统理解AI如何思考
嵌入式Jerry
PythonAI人工智能深度学习
第一章:理解AI的思维方式(快递版)1.1快递分拣站的故事假设你管理一个快递分拣站:传统方法:手动制定规则(比如根据邮编分拣)机器学习:观察老员工的分拣记录,总结规律深度学习:搭建自动分拣流水线,自主发现隐藏规则1.2神经网络就像智能分拣机传送带(输入层):接收包裹信息(图片像素/文字等)#就像扫描快递单input_data=[0.2,0.7,0.1]#归一化后的特征数据分拣工人(隐藏层):每个工
- 简单理解机器学习中top_k、top_p、temperature三个参数的作用
无级程序员
机器学习人工智能
在机器学习中,top_k、top_p和temperature是用于控制生成模型(如语言模型)输出质量的参数,尤其在文本生成任务中常见。然而,网上文章很多很全,但大多晦涩难懂,今天我们来用最简单的语言谈谈它们的具体作用:1.点菜式筛选法:top_k参数英文全称:top-k中文名称:前k个具体意义:top_k参数就像是你在餐厅点菜时,服务员只给你推荐菜单上前k名的招牌菜。在AI文本生成中,top_k参
- 使用PyTorch搭建Transformer神经网络:入门篇
DASA13
pytorchtransformer神经网络
1.简介Transformer是一种强大的神经网络架构,在自然语言处理等多个领域取得了巨大成功。本教程将指导您使用PyTorch框架从头开始构建一个Transformer模型。我们将逐步解释每个组件,并提供详细的代码实现。2.环境设置首先,确保您的系统中已安装Python(推荐3.7+版本)。然后,安装PyTorch和其他必要的库:pipinstalltorchnumpymatplotlib3.P
- 解析大模型归一化:提升训练稳定性和性能的关键技术
秋声studio
口语化解析深度学习人工智能大模型归一化
引言在深度学习领域,特别是在处理大型神经网络模型时,归一化(Normalization)是一项至关重要的技术。它可以提高模型的训练稳定性和性能,在加速收敛方面发挥了重要作用。本文将深入探讨大模型归一化的原理、常见方法及其应用场景,并结合实际案例和代码示例进行说明。一、归一化的作用与理论基础归一化的主要目的是为了提高模型的训练稳定性和性能。具体来说,归一化有以下几个关键作用:提高训练稳定性:在神经网
- 小白零基础学数学建模系列-引言与课程目录
川川菜鸟
数学建模小白到精通系列数学建模
目录引言一、我们的专辑包含哪些内容?第一周:数学建模基础与工具第二周:高级数学建模技巧与应用第三周:机器学习基础与数据处理第四周:监督学习与无监督学习算法第五周:神经网络二、学完本专辑能收获到什么?三、适合什么样的人群学习?四、如何学习本专辑?课程目录第1周:数学建模基础与工具第1天:数学建模入门介绍第2天:数学建模工具介绍第3天:线性回归与曲线拟合第4天:线性规划第5天:动态规划第2周:高级数学
- C++基础系列【26】排序和查找算法
程序喵大人
C++基础系列c语言算法开发语言c++
博主介绍:程序喵大人35-资深C/C++/Rust/Android/iOS客户端开发10年大厂工作经验嵌入式/人工智能/自动驾驶/音视频/游戏开发入门级选手《C++20高级编程》《C++23高级编程》等多本书籍著译者更多原创精品文章,首发gzh,见文末记得订阅专栏,以防走丢C++基础系列专栏C语言基础系列专栏C++大佬养成攻略专栏C++训练营排序与查找算法的重要性不用过多介绍了吧,面试也经常考察。
- 初始OpenCV
指尖下的技术
OpenCVopencv人工智能计算机视觉
OpenCV是一个功能强大、应用广泛的计算机视觉库,它为开发人员提供了丰富的工具和算法,可以帮助他们快速构建各种视觉应用。随着计算机视觉技术的不断发展,OpenCV也将会继续发挥重要的作用。OpenCV提供了大量的计算机视觉算法和图像处理工具,广泛应用于图像和视频的处理、分析以及机器学习领域。所以学习人计算机视觉或者图像处理方面的知识,OpenCV是一个要重点学习的工具库。首先介绍一下OpenCV
- 深入探讨盘古大模型的高精度多尺度能力
Hardess-god
WRF人工智能算法
随着人工智能技术的快速发展,大模型的研究逐渐进入新的阶段。其中,盘古大模型以其卓越的高精度和多尺度处理能力成为研究热点。本文将详细分析盘古模型在高精度多尺度问题上的技术特征、优势和应用潜力,并探讨其深入研究的方向。一、盘古模型概述盘古模型是华为推出的中文预训练大模型系列,拥有数十亿甚至千亿级的参数规模。它以Transformer架构为基础,通过海量文本数据进行训练,表现出优异的自然语言理解和生成能
- AI巨浪中的安全之舵:天空卫士助力人工智能落地远航
天空卫士
人工智能安全数据安全网络安全大数据
"AI时代的安全战场,不在云端在本地;数据治理的胜负手,不在防御在认知。"近期,众多企业纷纷接入DeepSeek大模型,迅速推动了大型模型应用的广泛铺开。无论是在制造业、金融业,还是在医疗、教育等领域,DeepSeek大模型的应用都如火如荼,遍地开花,展现出了其广泛的应用前景和巨大的商业价值。顺势而来的是DeepSeek一体机以"低成本、高算力、私有化部署"的优势席卷企业市场。因为DeepSeek
- DeepSeek重塑软件行业:研发工程师的机遇与挑战
LiuSid7
人工智能llama语言模型ai
人工智能技术的浪潮正以前所未有的速度重塑软件行业,而DeepSeek作为其中的代表性技术,已成为研发工程师日常工作中不可忽视的变革力量。从代码生成到架构优化,从效率提升到职业生态重构,DeepSeek正在重新定义工程师的工作范式。以下从技术革新、职业发展、行业趋势三个维度,分析其对研发工程师的核心影响。一、技术革新:从“重复劳动”到“创造力释放”代码生产的效率革命DeepSeek通过自然语言指令生
- 机器学习结合伏羲模型高精度多尺度气象分析与降尺度实现
Hardess-god
WRF算法人工智能
随着人工智能的发展,机器学习技术在气象预报领域展现出巨大潜力。本文详细探讨如何结合机器学习(ML)和伏羲模型进行高精度多尺度气象模拟分析,并提供详细的实现步骤和相关代码。1.研究目标与技术路线目标:结合机器学习模型与伏羲气象模式,实现区域和局地高精度降尺度。技术路线:伏羲模型提供大尺度气象数据和预报使用机器学习模型(如CNN、LSTM、XGBoost)进行降尺度2.数据准备与处理2.1气象数据获取
- 使用Python和LangChain构建检索增强生成(RAG)应用的详细指南
m0_57781768
pythonlangchain搜索引擎
使用Python和LangChain构建检索增强生成(RAG)应用的详细指南引言在人工智能和自然语言处理领域,利用大语言模型(LLM)构建复杂的问答(Q&A)系统是一个重要应用。检索增强生成(RetrievalAugmentedGeneration,RAG)是一种技术,通过将模型知识与额外数据结合来增强LLM的能力,使其能够回答关于特定源信息的问题。这些应用不仅限于公开数据,还可以处理私有数据和模
- 不用再当“技术宅“!这个AI神器让我5分钟变身人工智能达人
阳光永恒736
AI工具人工智能deepseek一键包本地部署AI资源
最近我在朋友圈刷到好多朋友都在玩AI画图、AI写诗,看得我心痒痒。可每次想自己试试,打开教程就被满屏的代码吓退——"Python环境配置"、"CUDA驱动安装"这些词比数学作业还让人头疼。直到我发现了一个叫DeepSeek本地部署一键包的神器,我的AI探索之旅终于变得像搭乐高一样简单!夸克网盘分享一、原来AI离我们这么近上周三放学路上,我看见隔壁班的小美用AI给自己照片生成古风造型,这让我突然意识
- 基于ChatGPT、GIS与Python机器学习的地质灾害风险评估、易发性分析、信息化建库及灾后重建高级实践
weixin_贾
防洪评价风险评估滑坡泥石流地质灾害
第一章、ChatGPT、DeepSeek大语言模型提示词与地质灾害基础及平台介绍【基础实践篇】1、什么是大模型?大模型(LargeLanguageModel,LLM)是一种基于深度学习技术的大规模自然语言处理模型。代表性大模型:GPT-4、BERT、T5、ChatGPT等。特点:多任务能力:可以完成文本生成、分类、翻译、问答等任务。上下文理解:能理解复杂的上下文信息。广泛适配性:适合科研、教育、行
- DeepSeek API在AutoCAD中的创新应用与挑战
CodeJourney.
数据库算法人工智能
在数字化设计领域,随着人工智能技术的飞速发展,将AI能力融入传统设计软件成为提升设计效率和质量的重要趋势。AutoCAD作为广泛应用的计算机辅助设计软件,与DeepSeekAPI的结合展现出了巨大的潜力。这种融合不仅为设计工作带来了全新的思路和方法,还在多个方面对设计流程进行了优化和创新。一、DeepSeekAPI赋能AutoCAD的多元应用场景(一)智能设计辅助:让创意快速落地在传统设计过程中,
- AI 赋能应急管理:ChatGPT、DeepSeek、Grok 的应用探索
一ge科研小菜菜
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着人工智能(AI)技术的快速发展,大语言模型(LLM)在应急管理领域的应用逐步扩大。ChatGPT、DeepSeek、Grok等AI模型凭借强大的文本处理、数据分析和推理能力,可为灾害预警、应急响应、风险评估等提供高效支持。本文将对比三大AI模型在应急管理中的优势,并探讨其在未来智能化应急管理体系中的应用前景。2.应急管理中的核心挑战应
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs