最近在看DETR的源码,断断续续看了一星期左右,把主要的模型代码理清了。一直在考虑以什么样的形式写一写DETR的源码解析。考虑的一种形式是像之前写的YOLOv5那样的按文件逐行写,一种是想把源码按功能模块串起来。考虑了很久还是决定按第二种方式,一是因为这种方式可能会更省时间,另外就是也方便我整体再理解一下吧。
我觉得看代码就是要看到能把整个模型分功能拆开,最后再把所有模块串起来,这样才能达到事半功倍。
另外一点我觉得很重要的是:拿到一个开源项目代码,要有马上配置环境能够正常运行Debug,并且通过解析train.py马上找到主要模型相关的内容,然后着重关注模型方面的解析,像一些日志、计算mAP、画图等等代码,完全可以不看,可以省很多时间,所以以后我讲解源码都会把无关的代码完全剥离,不再讲解,全部精力关注模型、改进、损失等内容。
主要涉及models/detr.py。
Github注释版源码:HuKai97/detr-annotations
整个搭建过程分为:
def build(args):
# the `num_classes` naming here is somewhat misleading.
# it indeed corresponds to `max_obj_id + 1`, where max_obj_id
# is the maximum id for a class in your dataset. For example,
# COCO has a max_obj_id of 90, so we pass `num_classes` to be 91.
# As another example, for a dataset that has a single class with id 1,
# you should pass `num_classes` to be 2 (max_obj_id + 1).
# For more details on this, check the following discussion
# https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223
num_classes = 20 if args.dataset_file != 'coco' else 91
if args.dataset_file == "coco_panoptic":
# for panoptic, we just add a num_classes that is large enough to hold
# max_obj_id + 1, but the exact value doesn't really matter
num_classes = 250
device = torch.device(args.device)
# 搭建backbone resnet + PositionEmbeddingSine
backbone = build_backbone(args)
# 搭建transformer
transformer = build_transformer(args)
# 搭建整个DETR模型
model = DETR(
backbone,
transformer,
num_classes=num_classes,
num_queries=args.num_queries,
aux_loss=args.aux_loss,
)
# 是否需要额外的分割任务
if args.masks:
model = DETRsegm(model, freeze_detr=(args.frozen_weights is not None))
# HungarianMatcher() 二分图匹配
matcher = build_matcher(args)
# 损失权重
weight_dict = {'loss_ce': 1, 'loss_bbox': args.bbox_loss_coef}
weight_dict['loss_giou'] = args.giou_loss_coef
if args.masks: # 分割任务 False
weight_dict["loss_mask"] = args.mask_loss_coef
weight_dict["loss_dice"] = args.dice_loss_coef
# TODO this is a hack
if args.aux_loss: # 辅助损失 每个decoder都参与计算损失 True
aux_weight_dict = {}
for i in range(args.dec_layers - 1):
aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
losses = ['labels', 'boxes', 'cardinality']
if args.masks:
losses += ["masks"]
# 定义损失函数
criterion = SetCriterion(num_classes, matcher=matcher, weight_dict=weight_dict,
eos_coef=args.eos_coef, losses=losses)
criterion.to(device)
# 定义后处理
postprocessors = {'bbox': PostProcess()}
# 分割
if args.masks:
postprocessors['segm'] = PostProcessSegm()
if args.dataset_file == "coco_panoptic":
is_thing_map = {i: i <= 90 for i in range(201)}
postprocessors["panoptic"] = PostProcessPanoptic(is_thing_map, threshold=0.85)
return model, criterion, postprocessors
class DETR(nn.Module):
""" This is the DETR module that performs object detection """
def __init__(self, backbone, transformer, num_classes, num_queries, aux_loss=False):
""" Initializes the model.
Parameters:
backbone: torch module of the backbone to be used. See backbone.py
transformer: torch module of the transformer architecture. See transformer.py
num_classes: number of object classes
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
DETR can detect in a single image. For COCO, we recommend 100 queries.
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
"""
super().__init__()
self.num_queries = num_queries
self.transformer = transformer
hidden_dim = transformer.d_model
# 分类
self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
# 回归
self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
# self.query_embed 类似于传统目标检测里面的anchor 这里设置了100个 [100,256]
# nn.Embedding 等价于 nn.Parameter
self.query_embed = nn.Embedding(num_queries, hidden_dim)
self.input_proj = nn.Conv2d(backbone.num_channels, hidden_dim, kernel_size=1)
self.backbone = backbone
self.aux_loss = aux_loss # True
def forward(self, samples: NestedTensor):
""" The forward expects a NestedTensor, which consists of:
- samples.tensor: batched images, of shape [batch_size x 3 x H x W]
- samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
It returns a dict with the following elements:
- "pred_logits": the classification logits (including no-object) for all queries.
Shape= [batch_size x num_queries x (num_classes + 1)]
- "pred_boxes": The normalized boxes coordinates for all queries, represented as
(center_x, center_y, height, width). These values are normalized in [0, 1],
relative to the size of each individual image (disregarding possible padding).
See PostProcess for information on how to retrieve the unnormalized bounding box.
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
dictionnaries containing the two above keys for each decoder layer.
"""
if isinstance(samples, (list, torch.Tensor)):
samples = nested_tensor_from_tensor_list(samples)
# out: list{0: tensor=[bs,2048,19,26] + mask=[bs,19,26]} 经过backbone resnet50 block5输出的结果
# pos: list{0: [bs,256,19,26]} 位置编码
features, pos = self.backbone(samples)
# src: Tensor [bs,2048,19,26]
# mask: Tensor [bs,19,26]
src, mask = features[-1].decompose()
assert mask is not None
# 数据输入transformer进行前向传播
# self.input_proj(src) [bs,2048,19,26]->[bs,256,19,26]
# mask: False的区域是不需要进行注意力计算的
# self.query_embed.weight 类似于传统目标检测里面的anchor 这里设置了100个
# pos[-1] 位置编码 [bs, 256, 19, 26]
# hs: [6, bs, 100, 256]
hs = self.transformer(self.input_proj(src), mask, self.query_embed.weight, pos[-1])[0]
# 分类 [6个decoder, bs, 100, 256] -> [6, bs, 100, 92(类别)]
outputs_class = self.class_embed(hs)
# 回归 [6个decoder, bs, 100, 256] -> [6, bs, 100, 4]
outputs_coord = self.bbox_embed(hs).sigmoid()
out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]}
if self.aux_loss: # True
out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord)
# dict: 3
# 0 pred_logits 分类头输出[bs, 100, 92(类别数)]
# 1 pred_boxes 回归头输出[bs, 100, 4]
# 3 aux_outputs list: 5 前5个decoder层输出 5个pred_logits[bs, 100, 92(类别数)] 和 5个pred_boxes[bs, 100, 4]
return out
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [{'pred_logits': a, 'pred_boxes': b}
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
详细源码解析: 【DETR源码解析】二、Backbone模块 和 【DETR源码解析】三、Transformer模块
详细源码解析: 【DETR源码解析】四、损失计算和后处理模块
官方源码: https://github.com/facebookresearch/detr
b站源码讲解: 铁打的流水线工人
知乎【布尔佛洛哥哥】: DETR 源码解读
CSDN【在努力的松鼠】源码讲解: DETR源码笔记(一)
CSDN【在努力的松鼠】源码讲解: DETR源码笔记(二)
CSDN: Transformer中的position encoding(位置编码一)
知乎CV不会灰飞烟灭-【源码解析目标检测的跨界之星DETR(一)、概述与模型推断】
知乎CV不会灰飞烟灭-【源码解析目标检测的跨界之星DETR(二)、模型训练过程与数据处理】
知乎CV不会灰飞烟灭-【源码解析目标检测的跨界之星DETR(三)、Backbone与位置编码】
知乎CV不会灰飞烟灭-【源码解析目标检测的跨界之星DETR(四)、Detection with Transformer】
知乎CV不会灰飞烟灭-【源码解析目标检测的跨界之星DETR(五)、loss函数与匈牙利匹配算法】
知乎CV不会灰飞烟灭-【源码解析目标检测的跨界之星DETR(六)、模型输出与预测生成】