主要使用了PCA相关特征和平面拟合残差对点云进行分类。
主要是对该博主文章的复现(在此致谢,如有侵权请联系我),使得整体代码更加紧凑,方便阅读和理解。
点云特征计算主要借助于open3d,点云分类主要借助于sklearn。
得益于sklearn的优秀的接口设计,sklearn机器学习分类步骤大同小异。其主要步骤:
0预处理:将所有点云去掉地面点,只保留非地面点
1选择样本点云
2选择特征,并计算样本点云特征
3选择机器学习方法训练模型
4计算待分类点云的特征
5将特征代入模型预测分类结果。
show the codes:
import open3d as o3d
import numpy as np
from sklearn import svm
from sklearn.neighbors import NearestNeighbors
'''
使用3个特征进行点云分类:发散系数和线状特征,平面拟合残差(粗糙度)
'''
#计算最小二乘平面及距离(粗糙度)
def CaculateAverageSquareDistance(p):
num = p.shape[0]
B = np.zeros((p.shape[0],3))
one = np.ones((p.shape[0],1))
B[:,0] = p[:,0]
B[:,1] = p[:,1]
B[:,2] = one[:,0]
l = p[:,2]
BTB = np.matmul(B.T,B)
BTB_1 = np.linalg.pinv(BTB)
temp = np.matmul(BTB_1,B.T)
result = np.matmul(temp,l)
V = np.matmul(B,result)-l
sum = 0
for i in range (0,V.shape[0]):
sum = sum+V[i]**2
return sum/V.shape[0]
# 计算发散系数、线状特征
def computePointPCA(pointcloud):
# 计算整块点云的均值和协方差
mean_convariance = pointcloud.compute_mean_and_covariance()
# 特征分解得到特征值
eigen_values, eigen_vectors = np.linalg.eig(mean_convariance[1])
sorted_indices = np.argsort(eigen_values)
# min_indice=sorted_indices[0,0]
# 发散系数=最小特征值除以最大特征值
scattering = eigen_values[sorted_indices[0]] / eigen_values[sorted_indices[2]]
# 线状特征=(最大特征值-次大特征值)/最大特征值
line_feature=(eigen_values[sorted_indices[2]]-eigen_values[sorted_indices[1]])/eigen_values[sorted_indices[2]]
point_feature=[]
point_feature.append(scattering)
point_feature.append(line_feature)
return point_feature
# 计算点云中的每个点的发散系数、线状特征
def computeCloudFeature(pcd):
pcd_tree = o3d.geometry.KDTreeFlann(pcd)
k = 50
point_feature_list = []
for point in pcd.points:
[n, idx, _] = pcd_tree.search_knn_vector_3d(point, k)
#[n, idx, _] = pcd_tree.search_radius_vector_3d(point, 0.2)
# 转为np 获取近邻点
neigh_points_array = np.array(pcd.points)[idx[1:], :]
# 重新转为pointcloud
neigh_pointcloud = o3d.geometry.PointCloud()
neigh_pointcloud.points = o3d.utility.Vector3dVector(neigh_points_array)
shape = neigh_points_array.shape
# 点云数量不能小于3
if shape[0] > 5:
# 计算发散系数、线状特征
point_feature = computePointPCA(neigh_pointcloud)
#粗糙度
point_roughness=CaculateAverageSquareDistance(neigh_points_array);
point_feature.append(point_roughness)
point_feature_list.append(point_feature)
return point_feature_list
def writeData(path, features, type):
f = open(path, 'w')
for feature in features:
f.writelines(str(feature) + "," + str(type) + "\n")
f.close()
def writeData2(path, features, type):
f = open(path, 'a')
for feature in features:
f.writelines(str(feature) + "," + str(type) + "\n")
f.close()
# 按间距中的绿色按钮以运行脚本。
if __name__ == '__main__':
# 计算训练数据特征
# 建筑物特征
building_train_path = "./building_train2.pcd"
pcd = o3d.io.read_point_cloud(building_train_path)
# o3d.visualization.draw_geometries([pcd])
# scatter = computePointPCA(pcd)
building_list_feature = computeCloudFeature(pcd)
# 分别保存
#writeData("./building2_feature.txt", building_list_scatter, 1)
# 树木特征
tree_train_path = "./tree_train2.pcd"
tree_pcd = o3d.io.read_point_cloud(tree_train_path)
tree_list_feature = computeCloudFeature(tree_pcd)
# 分别保存
# writeData("./tree2_feature.txt", tree_list_scatter, 2)
# 保存到一个文件
# writeData2("./feature.txt", building_list_scatter, 1)
# writeData2("./feature.txt", tree_list_scatter, 2)
# 转成np
# building
building_feature_array = np.array(building_list_feature)
# 建筑物y=1
y_building = np.full((building_feature_array.shape[0], 1), 1)
# tree
tree_feature_array = np.array(tree_list_feature)
y_tree = np.full((tree_feature_array.shape[0], 1), 2)
# 得到训练数据集
train_x = np.concatenate((building_feature_array, tree_feature_array), axis=0)
train_y = np.concatenate((y_building, y_tree), axis=0)
# 读取待分类的点云
predict_points = o3d.io.read_point_cloud("./predict_data3.pcd")
predict_points_feature = computeCloudFeature(predict_points)
# 训练
clf = svm.SVC()
# x_train2 = np.array(train_x).reshape(-1, 1)
clf.fit(train_x, train_y)
# 分类并保存
f = open("./分类点云3特征.txt", "w")
points = np.asarray(predict_points.points)
for i in range(np.array(predict_points_feature).shape[0]):
# 预测
x=points[i,0]
y=points[i,1]
z=points[i,2]
ff=np.array(predict_points_feature[i])
#必须reshape
label = clf.predict(np.array(predict_points_feature[i]).reshape(1,3))
f.write(str(x) + " " + str(y) + " " + str(z) + " " + str(label[0]) + "\n")
# 保存点云与分类结果
f.close()
结果意料之中,对屋顶边缘容易出现误分类。分类的效果往往取决于特征的选择。另外特征计算用到PCA和特征分解,这两个都很耗时。如果应用到工程中还有许多要改进的地方。