可逆网络 推荐博客/论文汇总

【2021 CVPR】

 

Invertible Denoising Network: A Light Solution for Real Noise Removal

iVPF: Numerical Invertible Volume Preserving Flow for Efficient Lossless Compression

Invertible Image Signal Processing

Large-Capacity Image Steganography Based on Invertible Neural Networks

Quality-Agnostic Image Recognition via Invertible Decoder

Neural Parts: Learning Expressive 3D Shape Abstractions With Invertible Neural Networks

ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows

1. 细水长flow之NICE:流模型的基本概念与实现

细水长flow之NICE:流模型的基本概念与实现 - 知乎

原文链接:

NICE: Non-linear Independent Components Estimation

2. RealNVP与Glow:流模型的传承与升华

RealNVP与Glow:流模型的传承与升华 - 知乎

原文链接:

Density estimation using Real NVP

Glow: Generative Flowwith Invertible 1×1 Convolutions

3. 可逆ResNet:极致的暴力美学

可逆ResNet:极致的暴力美学 - 知乎

原文链接:

Invertible Residual Networks

4. Residual Flows for Invertible Generative Modeling

原文链接:

Residual Flows for Invertible Generative Modeling

5. Reversible GANs for Memory-efficient Image-to-Image Translation

原文链接:

Reversible GANs for Memory-efficient Image-to-Image Translation

6. 读论文:Analyzing Inverse Problems with Invertible Neural Networks

读论文:Analyzing Inverse Problems with Invertible Neural Networks | Jame's Blog

原文链接:

Analyzing Inverse Problems with Invertible Neural Networks

7. ECCV 2020 Oral | 可逆图像缩放:完美恢复降采样后的高清图片 - 云+社区 - 腾讯云

ECCV 2020 Oral | 可逆图像缩放:完美恢复降采样后的高清图片 - 云+社区 - 腾讯云

[论文阅读]Invertible Image Rescaling - 知乎

原文链接:

Invertible Image Rescaling

8. 大幅减少GPU显存占用:可逆残差网络(The Reversible Residual Network)

大幅减少GPU显存占用:可逆残差网络(The Reversible Residual Network) - 光彩照人 - 博客园

原文链接:

The Reversible Residual Network: Backpropagation Without Storing Activations

9. 论文笔记:i-REVNET: DEEP INVERTIBLE NETWORKS [ICLR2018]

论文笔记:i-REVNET: DEEP INVERTIBLE NETWORKS [ICLR2018]_想变有趣的EMMA-CSDN博客

原文链接:

i-RevNet: Deep Invertible Networks

10. FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models

原文链接:

FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models

你可能感兴趣的:(Network,神经网络,深度学习)