YOLOv5区域入侵检测【附完整代码以及视频演示】

一、前期准备:

首先你需要有一份yolov5的官方源码,并且能够找到其中的detect.py文件即可。

在检测过程中,有些项目不需要我们检测所有的区域,比如禁止区域的入侵检测,只需要检测制定规划出来的区域就可以。例如下图所示这样,在网上随便找的一段视频,这是其中的一张截图:

二、区域检测原理分析

在使用YOLOv5的有些时候,我们会遇到一些具体的目标检测要求,比如要求不检测全图,只在规定的区域内才检测。所以为了满足这个需求,可以使用掩码操作去覆盖掉不想检测的区域,使得在检测的时候,只检测我们规定的检测范围。

YOLOv5区域入侵检测【附完整代码以及视频演示】_第1张图片

1、确定区域检测范围

 # mask for certain region
        #1,2,3,4 分别对应左上,右上,右下,左下四个点
        hl1 = 1.4 / 10 #监测区域高度距离图片顶部比例
        wl1 = 6.4 / 10 #监测区域高度距离图片左部比例
        hl2 = 1.4 / 10  # 监测区域高度距离图片顶部比例
        wl2 = 6.8 / 10  # 监测区域高度距离图片左部比例
        hl3 = 4.5 / 10  # 监测区域高度距离图片顶部比例
        wl3 = 7.6 / 10  # 监测区域高度距离图片左部比例
        hl4 = 4.5 / 10  # 监测区域高度距离图片顶部比例
        wl4 = 5.5 / 10  # 监测区域高度距离图片左部比例

2、在135行左右的位置:for path, img, im0s, vid_cap in dataset: 下插入代码: 

        # mask for certain region
        #1,2,3,4 分别对应左上,右上,右下,左下四个点
        hl1 = 1.6 / 10 #监测区域高度距离图片顶部比例
        wl1 = 6.4 / 10 #监测区域高度距离图片左部比例
        hl2 = 1.6 / 10  # 监测区域高度距离图片顶部比例
        wl2 = 6.8 / 10  # 监测区域高度距离图片左部比例
        hl3 = 4.5 / 10  # 监测区域高度距离图片顶部比例
        wl3 = 7.6 / 10  # 监测区域高度距离图片左部比例
        hl4 = 4.5 / 10  # 监测区域高度距离图片顶部比例
        wl4 = 5.5 / 10  # 监测区域高度距离图片左部比例
        if webcam:
            for b in range(0,img.shape[0]):
                mask = np.zeros([img[b].shape[1], img[b].shape[2]], dtype=np.uint8)
                #mask[round(img[b].shape[1] * hl1):img[b].shape[1], round(img[b].shape[2] * wl1):img[b].shape[2]] = 255
                pts = np.array([[int(img[b].shape[2] * wl1), int(img[b].shape[1] * hl1)],  # pts1
                                [int(img[b].shape[2] * wl2), int(img[b].shape[1] * hl2)],  # pts2
                                [int(img[b].shape[2] * wl3), int(img[b].shape[1] * hl3)],  # pts3
                                [int(img[b].shape[2] * wl4), int(img[b].shape[1] * hl4)]], np.int32)
                mask = cv2.fillPoly(mask,[pts],(255,255,255))
                imgc = img[b].transpose((1, 2, 0))
                imgc = cv2.add(imgc, np.zeros(np.shape(imgc), dtype=np.uint8), mask=mask)
                #cv2.imshow('1',imgc)
                img[b] = imgc.transpose((2, 0, 1))

        else:
            mask = np.zeros([img.shape[1], img.shape[2]], dtype=np.uint8)
            #mask[round(img.shape[1] * hl1):img.shape[1], round(img.shape[2] * wl1):img.shape[2]] = 255
            pts = np.array([[int(img.shape[2] * wl1), int(img.shape[1] * hl1)],  # pts1
                            [int(img.shape[2] * wl2), int(img.shape[1] * hl2)],  # pts2
                            [int(img.shape[2] * wl3), int(img.shape[1] * hl3)],  # pts3
                            [int(img.shape[2] * wl4), int(img.shape[1] * hl4)]], np.int32)
            mask = cv2.fillPoly(mask, [pts], (255,255,255))
            img = img.transpose((1, 2, 0))
            img = cv2.add(img, np.zeros(np.shape(img), dtype=np.uint8), mask=mask)
            img = img.transpose((2, 0, 1))

3、画检测区域线 :在196行: p, s, im0, frame = path, ‘’, im0s.copy(), getattr(dataset, ‘frame’, 0) 后添加

            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
                cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),
                            cv2.FONT_HERSHEY_SIMPLEX,
                            1.0, (255, 255, 0), 2, cv2.LINE_AA)

                pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1
                                [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2
                                [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3
                                [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4
                # pts = pts.reshape((-1, 1, 2))
                zeros = np.zeros((im0.shape), dtype=np.uint8)
                mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))
                im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)
                cv2.polylines(im0, [pts], True, (255, 255, 0), 3)
                # plot_one_box(dr, im0, label='Detection_Region', color=(0, 255, 0), line_thickness=2)
            else:
                p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
                cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),
                            cv2.FONT_HERSHEY_SIMPLEX,
                            1.0, (255, 255, 0), 2, cv2.LINE_AA)
                pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1
                                [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2
                                [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3
                                [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4
                # pts = pts.reshape((-1, 1, 2))
                zeros = np.zeros((im0.shape), dtype=np.uint8)
                mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))
                im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)

                cv2.polylines(im0, [pts], True, (255, 255, 0), 3)

三、detect.py完整代码

# YOLOv5  by Ultralytics, GPL-3.0 license
"""
Run inference on images, videos, directories, streams, etc.

Usage:
    $ python path/to/detect.py --source path/to/img.jpg --weights yolov5s.pt --img 640
"""

import argparse
import os
import sys
from pathlib import Path

import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.experimental import attempt_load
from utils.datasets import LoadImages, LoadStreams
from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, \
    increment_path, non_max_suppression, print_args, save_one_box, scale_coords, set_logging, \
    strip_optimizer, xyxy2xywh
from utils.plots import Annotator, colors
from utils.torch_utils import load_classifier, select_device, time_sync


@torch.no_grad()
def run(weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
        source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
        imgsz=640,  # inference size (pixels)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
        ):
    source = str(source)
    save_img = not nosave and not source.endswith('.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    w = str(weights[0] if isinstance(weights, list) else weights)
    classify, suffix, suffixes = False, Path(w).suffix.lower(), ['.pt', '.onnx', '.tflite', '.pb', '']
    check_suffix(w, suffixes)  # check weights have acceptable suffix
    pt, onnx, tflite, pb, saved_model = (suffix == x for x in suffixes)  # backend booleans
    stride, names = 64, [f'class{i}' for i in range(1000)]  # assign defaults
    if pt:
        model = torch.jit.load(w) if 'torchscript' in w else attempt_load(weights, map_location=device)
        stride = int(model.stride.max())  # model stride
        names = model.module.names if hasattr(model, 'module') else model.names  # get class names
        if half:
            model.half()  # to FP16
        if classify:  # second-stage classifier
            modelc = load_classifier(name='resnet50', n=2)  # initialize
            modelc.load_state_dict(torch.load('resnet50.pt', map_location=device)['model']).to(device).eval()
    elif onnx:
        if dnn:
            # check_requirements(('opencv-python>=4.5.4',))
            net = cv2.dnn.readNetFromONNX(w)
        else:
            check_requirements(('onnx', 'onnxruntime'))
            import onnxruntime
            session = onnxruntime.InferenceSession(w, None)
    else:  # TensorFlow models
        check_requirements(('tensorflow>=2.4.1',))
        import tensorflow as tf
        if pb:  # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
            def wrap_frozen_graph(gd, inputs, outputs):
                x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), [])  # wrapped import
                return x.prune(tf.nest.map_structure(x.graph.as_graph_element, inputs),
                               tf.nest.map_structure(x.graph.as_graph_element, outputs))

            graph_def = tf.Graph().as_graph_def()
            graph_def.ParseFromString(open(w, 'rb').read())
            frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0")
        elif saved_model:
            model = tf.keras.models.load_model(w)
        elif tflite:
            interpreter = tf.lite.Interpreter(model_path=w)  # load TFLite model
            interpreter.allocate_tensors()  # allocate
            input_details = interpreter.get_input_details()  # inputs
            output_details = interpreter.get_output_details()  # outputs
            int8 = input_details[0]['dtype'] == np.uint8  # is TFLite quantized uint8 model
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    if pt and device.type != 'cpu':
        model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.parameters())))  # run once
    dt, seen = [0.0, 0.0, 0.0], 0
    for path, img, im0s, vid_cap in dataset:
        # mask for certain region
        #1,2,3,4 分别对应左上,右上,右下,左下四个点
        hl1 = 1.6 / 10 #监测区域高度距离图片顶部比例
        wl1 = 6.4 / 10 #监测区域高度距离图片左部比例
        hl2 = 1.6 / 10  # 监测区域高度距离图片顶部比例
        wl2 = 6.8 / 10  # 监测区域高度距离图片左部比例
        hl3 = 4.5 / 10  # 监测区域高度距离图片顶部比例
        wl3 = 7.6 / 10  # 监测区域高度距离图片左部比例
        hl4 = 4.5 / 10  # 监测区域高度距离图片顶部比例
        wl4 = 5.5 / 10  # 监测区域高度距离图片左部比例
        if webcam:
            for b in range(0,img.shape[0]):
                mask = np.zeros([img[b].shape[1], img[b].shape[2]], dtype=np.uint8)
                #mask[round(img[b].shape[1] * hl1):img[b].shape[1], round(img[b].shape[2] * wl1):img[b].shape[2]] = 255
                pts = np.array([[int(img[b].shape[2] * wl1), int(img[b].shape[1] * hl1)],  # pts1
                                [int(img[b].shape[2] * wl2), int(img[b].shape[1] * hl2)],  # pts2
                                [int(img[b].shape[2] * wl3), int(img[b].shape[1] * hl3)],  # pts3
                                [int(img[b].shape[2] * wl4), int(img[b].shape[1] * hl4)]], np.int32)
                mask = cv2.fillPoly(mask,[pts],(255,255,255))
                imgc = img[b].transpose((1, 2, 0))
                imgc = cv2.add(imgc, np.zeros(np.shape(imgc), dtype=np.uint8), mask=mask)
                #cv2.imshow('1',imgc)
                img[b] = imgc.transpose((2, 0, 1))

        else:
            mask = np.zeros([img.shape[1], img.shape[2]], dtype=np.uint8)
            #mask[round(img.shape[1] * hl1):img.shape[1], round(img.shape[2] * wl1):img.shape[2]] = 255
            pts = np.array([[int(img.shape[2] * wl1), int(img.shape[1] * hl1)],  # pts1
                            [int(img.shape[2] * wl2), int(img.shape[1] * hl2)],  # pts2
                            [int(img.shape[2] * wl3), int(img.shape[1] * hl3)],  # pts3
                            [int(img.shape[2] * wl4), int(img.shape[1] * hl4)]], np.int32)
            mask = cv2.fillPoly(mask, [pts], (255,255,255))
            img = img.transpose((1, 2, 0))
            img = cv2.add(img, np.zeros(np.shape(img), dtype=np.uint8), mask=mask)
            img = img.transpose((2, 0, 1))

        t1 = time_sync()
        if onnx:
            img = img.astype('float32')
        else:
            img = torch.from_numpy(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32
        img = img / 255.0  # 0 - 255 to 0.0 - 1.0
        if len(img.shape) == 3:
            img = img[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        if pt:
            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
            pred = model(img, augment=augment, visualize=visualize)[0]
        elif onnx:
            if dnn:
                net.setInput(img)
                pred = torch.tensor(net.forward())
            else:
                pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img}))
        else:  # tensorflow model (tflite, pb, saved_model)
            imn = img.permute(0, 2, 3, 1).cpu().numpy()  # image in numpy
            if pb:
                pred = frozen_func(x=tf.constant(imn)).numpy()
            elif saved_model:
                pred = model(imn, training=False).numpy()
            elif tflite:
                if int8:
                    scale, zero_point = input_details[0]['quantization']
                    imn = (imn / scale + zero_point).astype(np.uint8)  # de-scale
                interpreter.set_tensor(input_details[0]['index'], imn)
                interpreter.invoke()
                pred = interpreter.get_tensor(output_details[0]['index'])
                if int8:
                    scale, zero_point = output_details[0]['quantization']
                    pred = (pred.astype(np.float32) - zero_point) * scale  # re-scale
            pred[..., 0] *= imgsz[1]  # x
            pred[..., 1] *= imgsz[0]  # y
            pred[..., 2] *= imgsz[1]  # w
            pred[..., 3] *= imgsz[0]  # h
            pred = torch.tensor(pred)
        t3 = time_sync()
        dt[1] += t3 - t2

        # NMS
        pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
        dt[2] += time_sync() - t3

        # Second-stage classifier (optional)
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            # if webcam:  # batch_size >= 1
            #     p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
            # else:
            #     p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
                cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),
                            cv2.FONT_HERSHEY_SIMPLEX,
                            1.0, (255, 255, 0), 2, cv2.LINE_AA)

                pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1
                                [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2
                                [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3
                                [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4
                # pts = pts.reshape((-1, 1, 2))
                zeros = np.zeros((im0.shape), dtype=np.uint8)
                mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))
                im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)
                cv2.polylines(im0, [pts], True, (255, 255, 0), 3)
                # plot_one_box(dr, im0, label='Detection_Region', color=(0, 255, 0), line_thickness=2)
            else:
                p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
                cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),
                            cv2.FONT_HERSHEY_SIMPLEX,
                            1.0, (255, 255, 0), 2, cv2.LINE_AA)
                pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1
                                [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2
                                [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3
                                [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4
                # pts = pts.reshape((-1, 1, 2))
                zeros = np.zeros((im0.shape), dtype=np.uint8)
                mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))
                im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)

                cv2.polylines(im0, [pts], True, (255, 255, 0), 3)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                        annotator.box_label(xyxy, label, color=colors(c, True))
                        if save_crop:
                            save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

            # Print time (inference-only)
            print(f'{s}Done. ({t3 - t2:.3f}s)')

            # Stream results
            im0 = annotator.result()
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer[i].write(im0)

    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)

def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / '权重文件', help='model path(s)')
    parser.add_argument('--source', type=str, default=ROOT / '检测图片', help='file/dir/URL/glob, 0 for webcam')
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='show results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--visualize', action='store_true', help='visualize features')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--line-thickness', default=1, type=int, help='bounding box thickness (pixels)')
    parser.add_argument('--hide-labels', default=True, action='store_true', help='hide labels')
    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(FILE.stem, opt)
    return opt


def main(opt):
    check_requirements(exclude=('tensorboard', 'thop'))
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)


四、成果演示

图片展示:

YOLOv5区域入侵检测【附完整代码以及视频演示】_第2张图片                                              YOLOv5区域入侵检测【附完整代码以及视频演示】_第3张图片

 视频展示:

yolov5区域检测 可以自己规定检测区域_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1bW4y1a7T2/?vd_source=9f0d0f111c76245d253ea0cb1e2be6e8

你可能感兴趣的:(yolov5,深度学习,Python学习,目标检测,人工智能,计算机视觉)