- CTF 竞赛密码学方向学习路径规划
David Max
CTF学习笔记密码学ctf信息安全
目录计算机科学基础计算机科学概念的引入、兴趣的引导开发环境的配置与常用工具的安装WattToolkit(Steam++)、机场代理Scoop(Windows用户可选)常用Python库SageMathLinux小工具yafuOpenSSLMarkdown编程基础Python其他编程语言、算法与数据结构(可选)数学基础离散数学与抽象代数复杂性分析密码学的正式学习兴趣的培养做题小技巧系统学习需要了解并
- 抽象代数精解【2】
叶绿先锋
基础数学与应用数学抽象代数人工智能
文章目录群消去律的意义消去律与群的其他性质总结难点与例子例子参考文献群下面由文心一言生成群中的消去律是群论中的一个基本定理,它描述了群中元素之间的一种特殊关系。具体来说,群中的消去律包含左右两个方向,可以表述为:左消去律:若(ab=ac)(ab=ac)(ab=ac)且(a,b,c∈G)(a,b,c\inG)(a,b,c∈G)其中(G)是一个群,则b=c。右消去律:若(ba=ca)(ba=ca)(b
- Collatz 猜想和 Python
不连续小姐
PythonDay4:CollatzConjecture原来总有学生问我,微积分有什么用啊,我说如果微积分学好了,也许抽象代数和数论就能学好,那最后就能像AndrewWiles一样上人物年度杂志的封面了.(AndrewWiles证明了Fermat'sLastTheorem,费玛大定理).[captionid="attachment_1466"align="alignnone"width="300"
- 范畴论系列(一)初识范畴
数学
起因写这个系列起源于自己学习编程语言时遇到的问题,研究编程语言不可避免要与数学打交道,自己大学只学过数学分析和高等代数等数学系一年级课程,PLT(ProgrammingLanguageTheroy)需要的数学基础大致为:抽象代数(AbstractAlgebra)、拓扑(Topology)、范畴(CategoryTheory)等代数知识,在阅读相关PL书籍时,深感自己的无力。我又是一个"死磕"的人,
- 幂等性非侵入式实现
十一技术斩
面试mysqljava后端数据库
幂等性今天我们来谈谈什么是幂等性?引用百度百科的解析如下:幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。例如,“setTrue()”函
- 智能机器人与旋量代数(3)
Metaphysicist.
智能机器人与旋量代数机器人
Chapt2.李群李代数的基本理论2.1群论的基本概念(TheTheoryofGroups)群的概念最初是由19世纪的数学家伽罗瓦提出的,群是抽象代数中的一类结构,,它与研究对称性紧密相关,如代数方程的对称性以及几何图形的对称性(同样的群甚至可以表达几个不同种类物体的对称性)。通常可以认为群是所有对称运算的集合,群论从本质上来讲就是一种描述各种各样的对称性的数学工具。定义2.1群是指可对其元素gg
- 【无标题】
数学专业的小白
考研
考研过了一周,是不是该准备研究生复试了?结合自身经历谈谈研究生复试需要注意的事项:注意复试科目和形式每个学校复试科目和形式都大不一样,以数学专业举例,有的学校复试科目较多,如复变函数、实变函数、抽象代数、泛函分析()等;有的学校只需复试一个科目(必选一个科目)。现在估计是线下面试为主了,有的学校要求制作PPT或者简历,这个必须注意,PPT和简历上写的每个内容,都要经得起推敲,问起来必须能够回答出来
- python实现一维傅里叶变换——冈萨雷斯数字图像处理
筱筱西雨
图像处理python开发语言图像处理计算机视觉
原理傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。定义:给定一个函数f(t),傅立叶变换将这个函数从时域(时间域)转换到频域(频率域)上的函数。傅立叶变换的数学表示如下:在这个表示中,F(ω)表示频域上的
- 格密码基础:q-ary格
唠嗑!
格密码格密码线性代数格基
目录一.格密码的重要性二.格密码基础2.1格点的另一种理解方式三.q-ary格3.1q-ary垂直格3.2q-ary格3.3二者结合四.论文中的q-ary格4.1定理14.2定理24.3定理3一.格密码的重要性格密码的基础是研究格点上的困难问题,这种格点使用抽象代数的观点则是上的子群。格密码近些年非常火热,主要由于以下几点:抗量子攻击。基于传统数论的公钥密码系统是无法抵抗量子攻击的,这也是格密码最
- 时频分析方法及其在发展性EEG数据中的应用
茗创科技
文章来源于微信公众号(茗创科技),欢迎有兴趣的朋友搜索关注。导读EEG为神经振荡这类大脑活动提供了丰富的测量。然而,到目前为止,大多数发展性脑电研究都集中在以事件相关电位(ERPs)或基于傅立叶变换的功率来分析脑电信号数据。虽然这些测量手段卓有成效,但它们并没有利用脑电信号中包含的所有信息。也就是说,ERP分析忽略了非锁相信号,而基于傅立叶分析的功率分析忽略了时间信息。时频分析可以更好地刻画包含在
- 如何保证分布式情况下的幂等性
豆奶快攻
设计模式设计Java分布式
关于这个分布式服务的幂等性,这是在使用分布式服务的时候会经常遇到的问题,比如,重复提交的问题。而幂等性,就是为了解决问题存在的一个概念了。什么是幂等幂等(idempotent、idempotence)是⼀个数学与计算机学概念,常⻅于抽象代数中。在编程中⼀个幂等操作的特点是其任意多次执⾏所产⽣的影响均与⼀次执⾏的影响相同。幂等函数,或幂等⽅法,是指可以使⽤相同参数重复执⾏,并能获得相同结果的函数。这
- 线性代数一
刘瞧瞧
线性代数
每日学习刘瞧翘线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。概念线性代数是代数学的一个分
- 【密码学】抽象代数——群(学习笔记)
aching_
密码学学习笔记密码学信息安全抽象代数
群1、运算及关系运算的本质:两个元素经过一定的法则得到一个元素。(加减乘除)运算的规律:交换律、结合律、分配律交换律ab=ba结合律a(bc)=(ab)c分配律a∘(b+c)=a∘b+a∘c关系:非空集合A中对两个元素而言的一种性质,使A中任何两个元素,或有这种性质,或没有这种性质,二者必居其一。例:关系为“>”,A中任意两个元素,或大于,或不大于。(总有属于一种)等价关系:非空集合A中定义了关系
- 抽象代数笔记2——群
rsy56640
数学
CSDN前端有毒,Latex写出来排版全乱……………………………………………………………………………………………….群的定义:设GG是一个非空集合,“oo”是GG上的二元代数运算,称为乘法。如果下列条件成立,则称GG对它的乘法“oo”构成一个群(Group)。1.乘法“oo”满足结合律。2.对乘法“oo”,GG中有一个左幺元ee。即∀a∈G,eoa=a∀a∈G,eoa=a3.对乘法“oo”,GG中
- 【考研—密码学数论基础】环、群、域、多项式运算
GoesM
考研--密码学与网络安全c++数论考研密码学抽象代数
注:下述笔记根据学习通公开课程《数学的思维方式与创新》,部分内容并非严谨数学定义,个人理解居多。注2:第一遍学的时候理解得太片面了,面试被问到了才意识到理解得有问题,特此重新更正Pre:理解一些问题群?环?域?这些概念是在聊什么?它们都相当于是一种特殊的集合。抽象代数中的加法?乘法?本质是:定义新运算。它其实不同于我们平时知道的乘法和加法,但在逻辑上有一些相似之处。单位元:在集合中作乘法运算,类似
- 数据幂等
carl_zhao
在系统设计的时候,操作幂等设计是一点需要考虑的点。幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。用数学表达式来表达的话:f(x)=f(f(x))1、数据库幂等幂等性是后续多余的调用不会对系统数据的一致性进行破坏。在数据库操作一般会有增、删、查、改4类操作。下面我们来看这4
- 抽象代数 04.07 Jordan-Holder定理
longji
抽象代数抽象代数Jordan-Holder定理
http://www.icourses.cn南开大学《抽象代数》§4.7Jordan-Holder定理{\color{blue}{\text{\S4.7Jordan-Holder定理}}}§4.7Jordan-Holder定理可解群存在次正规序列使得因子都是素数阶循环群,且所有因子的阶的乘积为群G的阶。定义4.7.1.称群G的次正规序列{\color{blue}定义4.7.1.}称群G的次正规序列
- 分布式服务的幂等性的个人见解
是王威啊
概念幂等的概念来自于抽象代数,比如对于一元函数来说,满足如下条件:f(f(x))=f(x)即可称为满足幂等性。在计算机科学中,一个操作多次执行和一次执行的影响相同,这样的操作即符合幂等性。在分布式的系统中,服务消费方调用服务提供方的接口,多次调用的结果应该与一次调用的结果相同,这就是分布式环境下的幂等性的语义。为什么都在强调幂等性?因为分布式服务系统有可能因为网络不稳定原因导致一个服务的接口被重复
- 抽象代数简介
景知育德
集合交集·并集·差集在中学阶段就学习过集合,部分内容不再赘述。以下是交集、并集、差集的概念:幂集设是一个集合,那么的所有子集为成员构成的几何成为是幂集,记作。笛卡尔积设是两个集合,定义集合称为与的笛卡尔积,又称卡氏积,集合积。基数集合中元素个数称为集合的基数,记作。如果是无限的,则,称是无限集,否则是有限集。关系集合中的元素相互之间可能有关系(也可能没有关系)。例如全校的学生构成一个集合,某些学生
- 傅立叶分析导论-4 Some Applications of Fourier Series
buck
傅立叶分析导论
2Weyl’sequidistributiontheoremexample1的证明令ai={0,j/i},其中i=1,2,...,j=1,...,i−1,那么bi为把ai展开,那么需要证明∑#{ai∈(a,b)}N→(b−a),那么分几个步骤证明:1对于任意ε,存在N,满足n>N则(b−a−ε)≤∑#{{ai}n∈(a,b)}n≤(b−a)2如果y−ε≤ba≤y,那么对于任意c,存在足够大的n,只
- 傅立叶分析导论-2 Basic Properties of Fourier Series
buck
傅立叶分析导论
1ExamplesandformulationoftheproblemFunctionsonthecircle周期2π并且端点值相同的函数和定义在圆周上的函数,本身是同一个东西。理解起来比较抽象,就好像1个猴子和1头猪,都是1。1.1傅里叶系数an总是存在的,因为可积函数的积可积。5cesaroandabelsummabilitycorollary5.3与theorem2.1不同,更简单,因为ce
- 如何保证分布式情况下的幂等性
Elivis Hu
架构师分布式
关于这个分布式服务的幂等性,这是在使用分布式服务的时候会经常遇到的问题,比如,重复提交的问题。而幂等性,就是为了解决问题存在的一个概念了。什么是幂等幂等(idempotent、idempotence)是⼀个数学与计算机学概念,常⻅于抽象代数中。在编程中⼀个幂等操作的特点是其任意多次执⾏所产⽣的影响均与⼀次执⾏的影响相同。幂等函数,或幂等⽅法,是指可以使⽤相同参数重复执⾏,并能获得相同结果的函数。这
- 【分布式】: 幂等性和实现方式
无难事者若执
分布式架构中间件1024程序员节分布式java
【分布式】:幂等性和实现方式幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。例如,“setTrue()”函数就是一个幂等函数,无论多次执
- 抽象代数 01.05 循环群
longji
抽象代数抽象代数循环群
http://www.icourses.cn南开大学《抽象代数》§1.5循环群{\color{blue}\text{\S1.5循环群}}§1.5循环群定义1.5.1由一个元素a反复运算生成的群{\color{blue}定义1.5.1\quad}由一个元素a反复运算生成的群定义1.5.1由一个元素a反复运算生成的群G={an∣n∈Z}\qquadG=\lbracea^n|n\in\Z\rbraceG
- 【抽象代数】同态同构、循环群
karwen(^.^)
抽象代数抽象代数
同态与同构同态定义两个代数系统(A,o),(A‾,o‾)(A,o),(\overline{A},\overline{o})(A,o),(A,o),如果存在映射φ:A→A‾\varphi:A\rightarrow\overline{A}φ:A→A,若对于任意的a,b∈Aa,b\inAa,b∈A,都有φ(aob)=φ(a)o‾φ(b)\varphi(a\o\b)=\varphi(a)\overline
- 矩阵理论名词解释表
qq_34966169
矩阵线性代数
参考书链接:https://pan.baidu.com/s/1uWudKozeTvC_3nREy5hAKQ?pwd=6he0提取码:6he0–来自百度网盘超级会员V5的分享1.复数F实数R和复数C域,不包含其他数域F域(Field)是抽象代数中的一个重要概念,它是一种包含了加法和乘法运算的代数结构。F域是数学中的一种代数结构,通常用于研究线性代数、数论、编码理论、密码学等领域。F域具有以下性质:封
- 我们来谈下高并发和分布式中的幂等处理
java高并发
我们先来谈下幂等的概念抽象概念幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。复制代码在编程中,一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。例如,“getUsername()和setTru
- 接口幂等性总结整理
Mr_Chao3
1、什么是幂等性幂等,英文Idempotence幂等这个词原自数学,幂等性是数学中的一个概念,常见于抽象代数中,表达的是N次变换与1次变换的结果相同;简单来说就是如果方法调用一次和多次产生的效果是相同的,它就具有幂等性。幂等函数或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数,这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。幂等性(Idempotence)本身是一个数
- DH算法原理
spyder_men
DH算法原理DH是Diffie-Hellman的首字母缩写,是Whitefield与MartinHellman在1976年提出了一个的密钥交换协议。我个人倾向于称DH算法为密钥协商协议而RSA算法是密钥交换算法。本篇分为几个部分,第一个部分介绍一下密钥交换的场景;第二部分介绍一下DH算法的的步骤,以及由该算法引出的一些问题;第三部分开始讲数学原理。数学原理可能涉及到数论、抽象代数,本篇尽量在每个公
- 使用ChatGPT进行个性化学习
chatgpt机器学习
推荐:将NSDT场景编辑器加入你的3D工具链3D工具集:NSDT简石数字孪生在这篇文章中,您将发现ChatGPT作为机器学习和数据科学爱好者的个人导师的好处。特别是,您将学习如何让ChatGPT引导你学习抽象代数如何让ChatGPT帮助您准备数据科学面试让我们开始吧。使用ChatGPT作为您的个性化教师概述这篇文章分为三个部分;它们是:在12周内掌握线性代数机器学习面试的自我测验提示提示以增强学习
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {