- 在瑞芯微RK3588平台上使用RKNN部署YOLOv8Pose模型的C++实战指南
机 _ 长
YOLO系列模型有效涨点改进深度学习落地实战YOLOc++开发语言
在人工智能和计算机视觉领域,人体姿态估计是一项极具挑战性的任务,它对于理解人类行为、增强人机交互等方面具有重要意义。YOLOv8Pose作为YOLO系列中的新成员,以其高效和准确性在人体姿态估计任务中脱颖而出。本文将详细介绍如何在瑞芯微RK3588平台上,使用RKNN(RockchipNeuralNetworkToolkit)框架部署YOLOv8Pose模型,并进行C++代码的编译和运行。注本文全
- MoveNet: PyTorch实现的轻量级人体姿态估计框架
侯深业Dorian
MoveNet:PyTorch实现的轻量级人体姿态估计框架movenet.pytorch项目地址:https://gitcode.com/gh_mirrors/mo/movenet.pytorchMoveNet是一个基于PyTorch的人体姿态估计算法实现,由开发者fire717贡献至GitCode平台。该项目旨在提供一个高效、易用的解决方案,用于实时处理视频或图像中的人体动作识别。通过其强大的性
- Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation
MatthewHsw
SimplePose
arxiv:https://arxiv.org/pdf/1911.10529.pdfgithub:https://github.com/jialee93/Improved-Body-Parts原作者在知乎有讲解,链接既然是Rethinking,那么就要先只出需要rethinking的内容.文章主要针对于人体姿态估计中的bottom-up的方法,提出了关于bottom-up方法里的一些问题的思考:人
- 3D人体姿态估计(教程+代码)
毕设阿力
3d计算机视觉深度学习
3D人体姿态估计是指通过计算机视觉技术和深度学习算法,从图像或视频数据中准确地推测出人体的三维姿态信息,包括关节位置、角度和运动轨迹等。这项技术在虚拟现实、增强现实、运动分析、人体动作捕捉等领域具有广泛的应用前景。实现3D人体姿态估计的关键挑战之一是从二维图像中还原出人体的三维结构。通常,这需要使用多视角图像、深度传感器或者先进的深度学习模型来提取更丰富的信息以重建三维姿态。目前,基于深度学习的方
- ModuleNotFoundError: No module named ‘mmcv‘【已解决】
快快乐乐小小草
python
https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.htmlhttps://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html直接使用以上链接找属于自己电脑的
- python3.8.8显示ModuleNotFoundError: No module named ‘mmcv’
曹家小圆宝
pytorchmmcvpytorch机器学习深度学习
python3.8.8显示ModuleNotFoundError:Nomodulenamed‘mmcv’pipinstallmmcv不管用打开https://github.com/open-mmlab/mmcv按照torch和cuda版本选择安装pipinstallmmcv-full=={mmcv_version}-fhttps://download.openmmlab.com/mmcv/dist
- 论文阅读:《Deep Learning-Based Human Pose Estimation: A Survey》——Part 1:2D HPE
自信且放光芒66
深度学习论文阅读深度学习人工智能
目录人体姿态识别概述论文框架HPE分类人体建模模型二维单人姿态估计回归方法目前发展优化基于热图的方法基于CNN的几个网络利用身体结构信息提供构建HPE网络视频序列中的人体姿态估计2D多人姿态识别方法自上而下自下而上2DHPE总结数据集和评估指标2DHPE数据集2DHPE评价指标2DHPE方法性能的比较单人2DHPE多人2DHPE未来展望人体姿态识别概述应用模块:人机交互、运动分析、增强现实、虚拟现
- mmdetection模型转onnx和tensorrt实战
dream_home8407
python深度学习人工智能
一,说明1.本次实战使用的是mmdetection算法框架中的Cascase-Rcnn训练的模型;2.模型转换时,运行环境中各种工具的版本要保持一致;3.TensorRT我一直装不上,我用的是镜像环境.参考链接:link二,使用Docker镜像1.0,镜像基础环境构建exportTAG=openmmlab/mmdeploy:ubuntu20.04-cuda11.8-mmdeploydockerpu
- 【iOS ARKit】3D人体姿态估计实例
扬帆起航&d
ios3d
与2D人体姿态检测一样,在ARKit中,我们不必关心底层的人体骨骼关节点检测算法,也不必自己去调用这些算法,在运行使用ARBodyTrackingConfiguration配置的ARSession之后,基于摄像头图像的3D人体姿态估计任务也会启动,我们可以通过session(_session:ARSession,didUpdateanchors:[ARAnchor])代理方法直接获取检测到的ARB
- 【iOS ARKit】3D 人体姿态估计
扬帆起航&d
ios3d
与基于屏幕空间的2D人体姿态估计不同,3D人体姿态估计是尝试还原人体在三维世界中的形状与姿态,包括深度信息。绝大多数的现有3D人体姿态估计方法依赖2D人体姿态估计,通过获取2D人体姿态后再构建神经网络算法,实现从2D到3D人体姿态的映射。在ARKit中,由于是采用计算机视觉的方式估计人体姿态,与2D人体姿态估计一样,3D人体姿态估计也受到遮挡、光照、姿态、视角的影响,并且相比于2D人体姿态估计,3
- AI 实战训练营(Class 1)OpenMMLab 概述
Zhangdd1208
MMLab实战训练营人工智能深度学习计算机视觉
AI实战训练营(Class1)OpenMMLab概述OpenMMLab概述OpenMMLab各开源算法库详细介绍明星算法库:MMDetectionMMYOLOMMOCRMMDetection3DMMRotateMMSegmentationMMpretrainMMposeMMHuman3DMMAction2MMagicMMDeployPlaygroundOpenMMLab开源生态OpenMMLab概
- MMDetection
pythonSuperman
MMdDetectionMMDetection
什么是MMDetectionMMDetection实际上是一个用于目标检测的工具包,面向深度学习时代的。任务支持目标检测实例分割覆盖广泛440+个预训练模型60+篇论文复现常用学术数据集算法丰富两阶段检测器一阶段检测器级联检测器无锚框检测器Transformer使用方便训练工具测试工具推理APIMMDetection环境搭建MMCV是所有这个OpenMMLab系列包括MMDetection,MMC
- openmmlab加载自训练权重
HHzdh
目标检测python目标检测
openmmlab加载自训练权重在openmmlab中要加载自训练的模型权重,用于自己其他数据集训练的预训练模型。只需要在config文件中添加模型初始化。在config.py文件中的model配置中初始化。model=dict(type='TopdownPoseEstimator',data_preprocessor=dict(),backbone=dict(),head=dict(),test
- 基于 pytorch-openpose 实现 “多目标” 人体姿态估计
北桥苏
pytorch人工智能python
前言还记得上次通过MediaPipe估计人体姿态关键点驱动3D角色模型,虽然节省了动作K帧时间,但是网上还有一种似乎更方便的方法。MagicAnimate就是其一,说是只要提供一张人物图片和一段动作视频(舞蹈武术等),就可以完成图片人物转视频。于是我就去官网体验了一下,发现动作的视频长度不能超过5秒,当然,如果说要整长视频可以切多段处理再合成解决。主要的还是视频需要那种背景相对较纯的,不然提交表单
- 【时间序列篇】基于LSTM的序列分类-Pytorch实现 part3 化为己用
钟的子期
深度学习lstm分类pytorch
系列文章目录【时间序列篇】基于LSTM的序列分类-Pytorch实现part1案例复现【时间序列篇】基于LSTM的序列分类-Pytorch实现part2自有数据集构建【时间序列篇】基于LSTM的序列分类-Pytorch实现part3化为己用在一个人体姿态估计的任务中,需要用深度学习模型来进行序列分类。化为己用,实现成功。文章目录系列文章目录前言一、模型训练1导入库和自用函数2导入数据集3设备部署4
- 【时间序列篇】基于LSTM的序列分类-Pytorch实现 part2 自有数据集构建
钟的子期
深度学习lstm分类pytorch
系列文章目录【时间序列篇】基于LSTM的序列分类-Pytorch实现part1案例复现【时间序列篇】基于LSTM的序列分类-Pytorch实现part2自有数据集构建【时间序列篇】基于LSTM的序列分类-Pytorch实现part3化为己用在一个人体姿态估计的任务中,需要用深度学习模型来进行序列分类。时间花费最多的是在数据集的处理上。这一节主要内容就是对数据集的处理。文章目录系列文章目录前言一、任
- 【小白向】MMDeploy安装部署|暗坑标注版
早上真好
环境和报错处理openmmlabAI实战c++linux深度学习
文章目录序言正文1安装PPLCV2TensorRT环境相关3编译MMDeploy4编译SDK结束序言本文主要针对在编译安装OpenMMLab团队的MMDeploy模型部署工具时遇到的“难以下手”的问题。由于OpenMMLab的用户中很大一部分都是具有快速开发需求的人,或者说其实相当部分OpenMMlab开源算法体系的用户都没有特别扎实的代码基础或者理论基础,比如说我,在面对MMDeploy这个相对
- OPENPOSE人体姿态估计课程设计
冰雪与岩石
python人脸识别手势识别
心路历程:拿到这个题目一脸懵,完全不知道要做什么,尽管模型不需要自己训练(模型来源),可是完全不知道怎么使用,帮助文档好长,看了好久。最后运行了demo后,也不知道这东西有什么用(应该是这东西我有什么是能做出来的。陷入无限百度…)一、模型下载下载下来的模型文件中有一个demo,在bin文件夹下,命令行下使用python是openpose的示例。(我下载的模型文件夹)此外,里面models文件夹里有
- Python+OpenCV+OpenPose实现人体姿态估计(人体关键点检测)
weixin_44079197
python开发语言
目录1、人体姿态估计简介2、人体姿态估计数据集3、OpenPose库4、实现原理5、实现神经网络6、实现代码1、人体姿态估计简介人体姿态估计(HumanPostureEstimation),是通过将图片中已检测到的人体关键点正确的联系起来,从而估计人体姿态。人体关键点通常对应人体上有一定自由度的关节,比如颈、肩、肘、腕、腰、膝、踝等,如下图。通过对人体关键点在三维空间相对位置的计算,来估计人体当前
- 第十四周周报
Joy_moon
机器学习图像处理
文章目录摘要文献阅读Openpose方法模型的任务具体工作流程模型工作流程PAF(部分亲合场)匈牙利算法数据标签的制作总结摘要上周在那篇综述文章里,分视角和单视角去实现3d人体姿态估计。我就找了一篇多视角实现的人体估计的文章。使用openpose和评估3d无标记运动捕捉,然后我看了一篇使用openpose和评估3d无标记运动捕捉。然后我实在不懂这个openpose的原理,我就又去找了openpos
- mmdet tools 使用指南
小张Tt
目标检测python图像处理人工智能
MMDetection是一个基于PyTorch的目标检测开源工具箱。它是OpenMMLab项目的一部分。主分支代码目前支持PyTorch1.8及其以上的版本。使用前提(1)mmdet使用手册地址https://mmdetection.readthedocs.io/zh-cn/latest/user_guides/index.html#id2(2)第一次运行前请先运行pipinstallseabor
- 【七班】MMPose代码实践与耳朵穴位数据集实战【OpenMMLab AI实战营第二期Day3+作业1】
chg0901
数学建模人工智能计算机视觉
Update0.关键词:物体检测,姿态估计,MMPose,RTMPose,RTMDet,openmmlab,mmdet1.数据集下载和解压与验收任务三角板数据#删除原有的数据集文件(如有)!rm-rfdata/Triangle_215_Keypoint_cocodata/Triangle_215_Keypoint_coco.zip#下载数据集压缩包!wgethttps://zihao-downlo
- 【OpenMMLab AI实战营 学习笔记 DAY(三)-- mmclassification 安装配置 及 利用resnet训练flower模型】
R-F
人工智能学习python
OpenMMLabAI实战营学习笔记DAY(三)--在北京超算平台mmclassification安装配置及利用resnet训练flower模型北京超算平台一、mmclassification环境安装配置二、模型搭建及训练数据集MMCls配置⽂件提交计算本次课程,仍然是由王若晖老师进行讲解,中间的答疑部分由张子豪(B站同济子豪兄)进行答疑讲解,最后是由北京超级云计算的沈平岗老师进行北京超算平台的使
- 【笔记】书生·浦语大模型实战营——第四课(XTuner 大模型单卡低成本微调实战)
myaijarvis
笔记
【参考:tutorial/xtuner/README.mdatmain·InternLM/tutorial】【参考:(4)XTuner大模型单卡低成本微调实战_哔哩哔哩_bilibili-【OpenMMLab】】总结学到了linux系统中tmux的使用了解了XTuner大模型微调框架的使用pth格式参数转HuggingFace格式Merge模型参数学习记录tmuxaptupdate-y#更新源ap
- 大模型实战训练营笔记(1)
崖7046
笔记
1.大模型的发展:专用模型——通用大模型2.从模型到应用解释了模型到应用的具体实施流程,对整体的应用有了一个较为全面的认识。3.openmmlab全链条开源开放体系这部分是最有收获的,通过对这几种开源体系的介绍,其实也是对第二部分具体应用的一个较为详细的分析。a.书生万卷/opendatalab:数据系统b.预训练:对于大多数学习者来说应该不太需要c.微调增量微调+有监督微调d.评测e.部署f.智
- 【笔记】书生·浦语大模型实战营——第三课(基于 InternLM 和 LangChain 搭建你的知识库)
myaijarvis
笔记langchain
【参考:tutorial/langchainatmain·InternLM/tutorial】【参考:(3)基于InternLM和LangChain搭建你的知识库_哔哩哔哩_bilibili-【OpenMMLab】】笔记基础作业这里需要等好几分钟才行bug:碰到pandas相关报错就卸载重装输出文字乱码:重新生成向量文件pythoncreate_db.pycreate_db.py#首先导入所需第三
- 书生·浦语大模型实战营-学习笔记1
Kinno酱
大模型学习笔记人工智能自然语言处理chatgpt
目录书生·浦语大模型全链路开源体系数据集预训练微调评测部署多智能体视频地址:(1)书生·浦语大模型全链路开源体系开源工具github:https://github.com/InternLM/InternLM书生·浦语大模型全链路开源体系这次视频中介绍了由上海人工智能实验室OpenMMLab开发的大模型全链路体系框架,框架涵盖了大模型的生命周期中数据集构建、预训练、微调、部署、评测到应用的所有会用到
- 3D人体姿态估计
从懒虫到爬虫
3d目标检测
3D人体姿态估计是指通过算法对输入的图像或视频进行分析,推断出人体的三维姿态信息。该技术可以应用于许多领域,如虚拟现实、运动分析、人机交互等。1.算法原理:3D人体姿态估计利用深度学习模型作为算法的核心,通过网络学习人体姿态的表示和映射关系。该算法有两个阶段,第一阶段是从输入的图像或视频中提取人体的二维姿态信息;第二阶段是通过三维姿态恢复算法将二维姿态信息映射到三维空间中。2.视觉特征提取:3D人
- 3D人体姿态估计(教程+代码)
阿利同学
3d3d姿态估计姿态估计手势识别姿态识别
3D人体姿态估计是指通过计算机视觉和深度学习技术,从图像或视频中推断出人体的三维姿态信息。它是计算机视觉领域的一个重要研究方向,具有广泛的应用潜力,如人机交互、运动分析、虚拟现实、增强现实等。传统的2D人体姿态估计方法主要关注通过二维图像进行姿态推断,即从图像中提取人体关键点位置信息,然后根据这些关键点的空间关系推断出人体的姿态。然而,由于2D图像投影存在深度信息的缺失和模糊,2D姿态估计往往无法
- Human3.6m数据处理(mhformer代码解读)
从月亮走向月亮7
计算机视觉
对于3d人体姿态估计任务中数据集human3.6m的处理写在最前面:这是我自己的理解,说的不一定对。human3.6m有很多格式的数据,包括视频、2dgroundtruth、3dgroundtruth,还分为xyz坐标的表示形式和旋转向量表示形式,这篇只用到2d和3dgroundtruth(坐标表示的)。这篇csdn以cvpr2022的mhformer为例,基本上videopose3d之后数据处理
- 多线程编程之理财
周凡杨
java多线程生产者消费者理财
现实生活中,我们一边工作,一边消费,正常情况下会把多余的钱存起来,比如存到余额宝,还可以多挣点钱,现在就有这个情况:我每月可以发工资20000万元 (暂定每月的1号),每月消费5000(租房+生活费)元(暂定每月的1号),其中租金是大头占90%,交房租的方式可以选择(一月一交,两月一交、三月一交),理财:1万元存余额宝一天可以赚1元钱,
- [Zookeeper学习笔记之三]Zookeeper会话超时机制
bit1129
zookeeper
首先,会话超时是由Zookeeper服务端通知客户端会话已经超时,客户端不能自行决定会话已经超时,不过客户端可以通过调用Zookeeper.close()主动的发起会话结束请求,如下的代码输出内容
Created /zoo-739160015
CONNECTEDCONNECTED
.............CONNECTEDCONNECTED
CONNECTEDCLOSEDCLOSED
- SecureCRT快捷键
daizj
secureCRT快捷键
ctrl + a : 移动光标到行首ctrl + e :移动光标到行尾crtl + b: 光标前移1个字符crtl + f: 光标后移1个字符crtl + h : 删除光标之前的一个字符ctrl + d :删除光标之后的一个字符crtl + k :删除光标到行尾所有字符crtl + u : 删除光标至行首所有字符crtl + w: 删除光标至行首
- Java 子类与父类这间的转换
周凡杨
java 父类与子类的转换
最近同事调的一个服务报错,查看后是日期之间转换出的问题。代码里是把 java.sql.Date 类型的对象 强制转换为 java.sql.Timestamp 类型的对象。报java.lang.ClassCastException。
代码:
- 可视化swing界面编辑
朱辉辉33
eclipseswing
今天发现了一个WindowBuilder插件,功能好强大,啊哈哈,从此告别手动编辑swing界面代码,直接像VB那样编辑界面,代码会自动生成。
首先在Eclipse中点击help,选择Install New Software,然后在Work with中输入WindowBui
- web报表工具FineReport常用函数的用法总结(文本函数)
老A不折腾
finereportweb报表工具报表软件java报表
文本函数
CHAR
CHAR(number):根据指定数字返回对应的字符。CHAR函数可将计算机其他类型的数字代码转换为字符。
Number:用于指定字符的数字,介于1Number:用于指定字符的数字,介于165535之间(包括1和65535)。
示例:
CHAR(88)等于“X”。
CHAR(45)等于“-”。
CODE
CODE(text):计算文本串中第一个字
- mysql安装出错
林鹤霄
mysql安装
[root@localhost ~]# rpm -ivh MySQL-server-5.5.24-1.linux2.6.x86_64.rpm Preparing... #####################
- linux下编译libuv
aigo
libuv
下载最新版本的libuv源码,解压后执行:
./autogen.sh
这时会提醒找不到automake命令,通过一下命令执行安装(redhat系用yum,Debian系用apt-get):
# yum -y install automake
# yum -y install libtool
如果提示错误:make: *** No targe
- 中国行政区数据及三级联动菜单
alxw4616
近期做项目需要三级联动菜单,上网查了半天竟然没有发现一个能直接用的!
呵呵,都要自己填数据....我了个去这东西麻烦就麻烦的数据上.
哎,自己没办法动手写吧.
现将这些数据共享出了,以方便大家.嗯,代码也可以直接使用
文件说明
lib\area.sql -- 县及县以上行政区划分代码(截止2013年8月31日)来源:国家统计局 发布时间:2014-01-17 15:0
- 哈夫曼加密文件
百合不是茶
哈夫曼压缩哈夫曼加密二叉树
在上一篇介绍过哈夫曼编码的基础知识,下面就直接介绍使用哈夫曼编码怎么来做文件加密或者压缩与解压的软件,对于新手来是有点难度的,主要还是要理清楚步骤;
加密步骤:
1,统计文件中字节出现的次数,作为权值
2,创建节点和哈夫曼树
3,得到每个子节点01串
4,使用哈夫曼编码表示每个字节
- JDK1.5 Cyclicbarrier实例
bijian1013
javathreadjava多线程Cyclicbarrier
CyclicBarrier类
一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时 CyclicBarrier 很有用。因为该 barrier 在释放等待线程后可以重用,所以称它为循环的 barrier。
CyclicBarrier支持一个可选的 Runnable 命令,
- 九项重要的职业规划
bijian1013
工作学习
一. 学习的步伐不停止 古人说,活到老,学到老。终身学习应该是您的座右铭。 世界在不断变化,每个人都在寻找各自的事业途径。 您只有保证了足够的技能储
- 【Java范型四】范型方法
bit1129
java
范型参数不仅仅可以用于类型的声明上,例如
package com.tom.lang.generics;
import java.util.List;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value =
- 【Hadoop十三】HDFS Java API基本操作
bit1129
hadoop
package com.examples.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoo
- ua实现split字符串分隔
ronin47
lua split
LUA并不象其它许多"大而全"的语言那样,包括很多功能,比如网络通讯、图形界面等。但是LUA可以很容易地被扩展:由宿主语言(通常是C或 C++)提供这些功能,LUA可以使用它们,就像是本来就内置的功能一样。LUA只包括一个精简的核心和最基本的库。这使得LUA体积小、启动速度快,从 而适合嵌入在别的程序里。因此在lua中并没有其他语言那样多的系统函数。习惯了其他语言的字符串分割函
- java-从先序遍历和中序遍历重建二叉树
bylijinnan
java
public class BuildTreePreOrderInOrder {
/**
* Build Binary Tree from PreOrder and InOrder
* _______7______
/ \
__10__ ___2
/ \ /
4
- openfire开发指南《连接和登陆》
开窍的石头
openfire开发指南smack
第一步
官网下载smack.jar包
下载地址:http://www.igniterealtime.org/downloads/index.jsp#smack
第二步
把smack里边的jar导入你新建的java项目中
开始编写smack连接openfire代码
p
- [移动通讯]手机后盖应该按需要能够随时开启
comsci
移动
看到新的手机,很多由金属材质做的外壳,内存和闪存容量越来越大,CPU速度越来越快,对于这些改进,我们非常高兴,也非常欢迎
但是,对于手机的新设计,有几点我们也要注意
第一:手机的后盖应该能够被用户自行取下来,手机的电池的可更换性应该是必须保留的设计,
- 20款国外知名的php开源cms系统
cuiyadll
cms
内容管理系统,简称CMS,是一种简易的发布和管理新闻的程序。用户可以在后端管理系统中发布,编辑和删除文章,即使您不需要懂得HTML和其他脚本语言,这就是CMS的优点。
在这里我决定介绍20款目前国外市面上最流行的开源的PHP内容管理系统,以便没有PHP知识的读者也可以通过国外内容管理系统建立自己的网站。
1. Wordpress
WordPress的是一个功能强大且易于使用的内容管
- Java生成全局唯一标识符
darrenzhu
javauuiduniqueidentifierid
How to generate a globally unique identifier in Java
http://stackoverflow.com/questions/21536572/generate-unique-id-in-java-to-label-groups-of-related-entries-in-a-log
http://stackoverflow
- php安装模块检测是否已安装过, 使用的SQL语句
dcj3sjt126com
sql
SHOW [FULL] TABLES [FROM db_name] [LIKE 'pattern']
SHOW TABLES列举了给定数据库中的非TEMPORARY表。您也可以使用mysqlshow db_name命令得到此清单。
本命令也列举数据库中的其它视图。支持FULL修改符,这样SHOW FULL TABLES就可以显示第二个输出列。对于一个表,第二列的值为BASE T
- 5天学会一种 web 开发框架
dcj3sjt126com
Web框架framework
web framework层出不穷,特别是ruby/python,各有10+个,php/java也是一大堆 根据我自己的经验写了一个to do list,按照这个清单,一条一条的学习,事半功倍,很快就能掌握 一共25条,即便很磨蹭,2小时也能搞定一条,25*2=50。只需要50小时就能掌握任意一种web框架
各类web框架大同小异:现代web开发框架的6大元素,把握主线,就不会迷路
建议把本文
- Gson使用三(Map集合的处理,一对多处理)
eksliang
jsongsonGson mapGson 集合处理
转载请出自出处:http://eksliang.iteye.com/blog/2175532 一、概述
Map保存的是键值对的形式,Json的格式也是键值对的,所以正常情况下,map跟json之间的转换应当是理所当然的事情。 二、Map参考实例
package com.ickes.json;
import java.lang.refl
- cordova实现“再点击一次退出”效果
gundumw100
android
基本的写法如下:
document.addEventListener("deviceready", onDeviceReady, false);
function onDeviceReady() {
//navigator.splashscreen.hide();
document.addEventListener("b
- openldap configuration leaning note
iwindyforest
configuration
hostname // to display the computer name
hostname <changed name> // to change
go to: /etc/sysconfig/network, add/modify HOSTNAME=NEWNAME to change permenately
dont forget to change /etc/hosts
- Nullability and Objective-C
啸笑天
Objective-C
https://developer.apple.com/swift/blog/?id=25
http://www.cocoachina.com/ios/20150601/11989.html
http://blog.csdn.net/zhangao0086/article/details/44409913
http://blog.sunnyxx
- jsp中实现参数隐藏的两种方法
macroli
JavaScriptjsp
在一个JSP页面有一个链接,//确定是一个链接?点击弹出一个页面,需要传给这个页面一些参数。//正常的方法是设置弹出页面的src="***.do?p1=aaa&p2=bbb&p3=ccc"//确定目标URL是Action来处理?但是这样会在页面上看到传过来的参数,可能会不安全。要求实现src="***.do",参数通过其他方法传!//////
- Bootstrap A标签关闭modal并打开新的链接解决方案
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
Bootstrap里面的js modal控件使用起来很方便,关闭也很简单。只需添加标签 data-dismiss="modal" 即可。
可是偏偏有时候需要a标签既要关闭modal,有要打开新的链接,尝试多种方法未果。只好使用原始js来控制。
<a href="#/group-buy" class="btn bt
- 二维数组在Java和C中的区别
流淚的芥末
javac二维数组数组
Java代码:
public class test03 {
public static void main(String[] args) {
int[][] a = {{1},{2,3},{4,5,6}};
System.out.println(a[0][1]);
}
}
运行结果:
Exception in thread "mai
- systemctl命令用法
wmlJava
linuxsystemctl
对比表,以 apache / httpd 为例 任务 旧指令 新指令 使某服务自动启动 chkconfig --level 3 httpd on systemctl enable httpd.service 使某服务不自动启动 chkconfig --level 3 httpd off systemctl disable httpd.service 检查服务状态 service h