- 神经网络初步学习3——数据与损失
X Y O
神经网络学习人工智能
一、传统机器学习与神经网络前言:该部分需要一定的机器学习与数学基础(很浅的基础),如果有不理解的地方可以自行查阅。(1)区别这里不妨以图像识别为例子:(1)在传统的机器学习视角中:我们需要人工手动去设置并提取我们的特征量,例如常见的SIFT、SURF和HOG等,随后需要我们选择合适的分类器(例如:SVM、KNN等分类器),接着把我们的参数训练出来。(2)而在神经网络的视角中:我们只需要把图片喂给它
- 柯里化(Currying)技术
目录函数结构解析:等效展开写法:使用示例:关键特性:实际应用场景:柯里化(Currying)技术:将一个多参数函数拆解为多个单参数函数的链式调用。以下是详细解释:funcadd(_a:Int)->(Int)->Int{{a+$0}}函数结构解析:外层函数add(_a:Int)接收一个整数参数a返回类型为(Int)->Int(一个接收整数并返回整数的函数)内层闭包{a+$0}捕获外层函数的参数a$0
- 异物检测的计算机视觉算法技术路线
思绪漂移
计算机视觉算法人工智能
异物检测的计算机视觉算法技术路线在现代智能监测系统中,异物检测有着其必要性和运维重要性,通过计算机视觉算法,可以实时识别各种异常物体,为设备安全运行提供有力保障。本文将介绍异物检测的主要技术路线。一、分类识别适应场景分类识别技术主要适用于已知目标类别的异物检测场景。在运维环境中,这类场景包括:固定区域内的障碍物监测(如轨道区域的石块、工具、动物等)关键部件的异物附着检测(如固定装置上的杂物)安全通
- 【目标检测】Yolov7 的 ELAN 和 E-ELAN 模块演进(涉及到分组卷积,cardinality,梯度路径)
Jiangnan_Cai
深度学习目标检测YOLO人工智能
感觉从YOLOv6开始,YOLOv6系列感觉优化点都着重于推理速度上面,YOLOv6的RepBlock重参数化,给我的感觉就是算子融合进行加速。而YOLOv7,为了在各种架构的边缘设备上获得极致的推理速度。YOLOv7的工作:新的bagoffreebies(有效的训练技巧,不会增加推理的计算量)有规划的重参数化模型(不同边缘设备架构,不同的重参数化方法)新的动态标签分配方法为了更好的理解YOLOv
- 西门子触摸屏与S7-200 SMART CPU的以太网通信
用户通过以下步骤可创建以太网接口的西门子触摸屏与S7-200SMARTCPU的以太网通信,在此以设备Smart1000IE为例。在WinCCflexible的主工作窗口中添加与CPU的连接与上文中RS485接口的西门子触摸屏类似,在此不再赘述。下面主要介绍连接参数设置及下载项目等。设置连接参数,首先选择Smart1000IE的接口为“以太网”,即触摸屏的以太网接口。选中该接口后,该接口的参数设置窗
- Linux文件权限管理
IT摆渡者
网络服务器运维linux
Linux文件权限管理:告别777,掌握核心操作在Linux系统中,文件权限是保障系统安全的基础。不少运维新手图省事,动辄给文件设置777权限,这其实隐藏着巨大安全风险。本文带你快速掌握Linux文件权限的核心知识与实用操作,摆脱对777的依赖。一、文件权限基础概念Linux通过"用户类别+权限类型"实现权限管控,核心要素包括:•三类用户:拥有者(user)、用户组(group)、其他用户(oth
- 穿透硅层:模电数电如何重塑你的编程基因
还债大湿兄
模电数电
“不理解电子运动的程序员,永远在数字世界的表层流浪。”——吉恩·阿姆达尔(IBM360系统架构师)一、晶体管级视角:代码的物理载体1.CPU指令执行的硬件真相关键模电参数:阈值电压Vth:决定晶体管开关的电压临界点(典型值0.7V)跨导gm:栅压控制电流的能力(单位mS)米勒电容Cgd:限制开关速度的核心因素2.存储器操作的电子原理DRAM存储单元刷新过程://硬件级刷新伪代码voiddram_r
- nRF52832 低功耗设计与优化
mftang
zephyr架构蓝牙应用笔记NordicMCU系列笔记ZephyrRTOSzephyr架构蓝牙应用笔记
目录概述1技术背景2优化策略2.1系统级电源管理2.2时钟系统优化2.3GPIO配置优化3蓝牙协议栈优化3.1连接参数优化3.2广播优化4电源管理实践4.1功耗状态转换图4.2典型功耗分布5低功耗设计最佳实践5.1事件驱动架构5.2定时任务管理5.3数据批处理6高级优化技术6.1电压调节优化6.2RAM保持策略6.3动态功耗分析7功耗测量与验证8常见问题解决8.1功耗高于预期8.2唤醒延迟过长8.
- 卷积神经网络架构的演进:从AlexNet到EfficientNet
t0_54manong
大数据与人工智能cnn架构人工智能个人开发
在过去的8.5年里,深度学习取得了飞速的进步。回溯到2012年,AlexNet在ImageNet上的Top-1准确率仅为63.3%,而如今,借助EfficientNet架构和师生训练法,我们已经能达到超过90%的准确率。本文将聚焦于卷积神经网络(CNN)架构的演变,深入探究其背后的基本原理。一些关键术语在深入了解各种架构之前,我们需要明确几个关键术语。更宽的网络意味着卷积层中有更多的特征图(滤波器
- web后端框架MyBatis
猿力觉醒
java后端mybatis
目录前言1.xml配置方式开发步骤2.注解方式开发步骤前言mybatis是一个优秀的基于java的持久层框架,它内部封装了jdbc,使开发者只需要关注sql语句本身,而不需要花费精力去处理加载驱动、创建连接、创建statement等繁杂的过程。mybatis通过xml或注解的方式将要执行的各种statement配置起来,并通过java对象和statement中sql的动态参数进行映射生成最终执行的
- 【车载测试之CAPL编程系列】:【16】函数定义(2)
车载测试CAPL编程系列:CAPL中的函数定义(2)目录函数定义的基本形式参数类型与返回值函数重载(Overload)返回值限制:不能返回数组AI总结函数定义的基本形式CAPL函数定义具有灵活性,可根据需求设计无返回值、无参数的函数。无返回值、无参数的函数返回值类型:若函数无返回值,可声明为void,且void关键字可省略(CAPL特性,区别于C语言)。参数:允许无参数,但必须保留空括号()。示例
- Three.js 实现导出模型文件(.glb,.gltf)功能 GLTFExporter
Three.js提供了导出(.glb,.gltf)文件的APIGLTFExporter用于实现场景内容导出模型文件的功能导出模型文件主要使用parse方法,该方法接收三个参数:1.scene:要导出的场景对象。2.onComplete:解析完成后的回调函数,接收一个参数result,表示解析后的glTF数据。3.options:可选参数,用于配置导出的选项。下面是options的一些常用参数选项:
- ECR仓库CloudFormation模板完整指南
ivwdcwso
运维与云原生自动化aws运维ECRCloudFormation镜像容器
概述本文档详细介绍了一个通用的AmazonECR(ElasticContainerRegistry)仓库CloudFormation模板,该模板支持多业务组、参数化配置,并包含完整的安全策略、生命周期管理和监控功能。模板特性核心功能✅支持4个业务组:app、ai、mall、frontend✅灵活的服务名手动输入✅多环境支持(dev/test/staging/prod)✅自动镜像扫描和安全检查✅生命
- 万向节死锁公式推导
微小冷
机器人欧拉角旋转矩阵万向节万向节死锁旋转轴旋转
文章目录欧拉角的万向节死锁旋转轴欧拉角的万向节死锁如果把刚体的旋转沿着三个旋转轴进行拆分,那么可以变成三个旋转角的叠加,这三个旋转角就是欧拉角,分别对应旋转矩阵,为了书写方便,记Sθ=sinθ,Cθ=cosθS_\theta=\sin\theta,C_\theta=\cos\thetaSθ=sinθ,Cθ=cosθ,则三个旋转矩阵为Rx(θ)R_x(\theta)Rx(θ)Ry(θ)R_y(\
- 开源人工神经网络库(OpenANN)
deepdata_cn
人工智能神经网络
OpenANN(OpenANN,OpenArtificialNeuralNetworkLibrary)是一个开源的人工神经网络库,基于C++编写,依赖Eigen3库进行高效的矩阵运算,使用CMake进行项目构建,支持多种神经网络架构,包括前馈神经网络、卷积神经网络和循环神经网络等,适用于图像识别、自然语言处理、时间序列预测等多种场景。提供数据预处理、模型保存和加载、超参数优化等功能。支持GPU加速
- Hanbit便携式GIS局部放电检测仪中PRPD图的绘制方法研究
Hanbit便携式GIS局部放电检测仪中PRPD图的绘制方法研究摘要本报告详细阐述了韩国HanbitPoDAS便携式GIS局部放电检测仪软件中相分辨局部放电(PRPD)图的生成方法。报告旨在阐明其技术原理、数据采集、信号处理以及分析功能,这些功能共同实现了对气体绝缘开关设备(GIS)绝缘状态的精确评估。HanbitPoDAS系统利用超高频(UHF)传感器和智能软件算法来捕获、处理并显示PRPD模式
- Unity中的动画过渡
数据猴赛雷
Unityunity游戏引擎
1、动画过渡概况动画过渡允许状态机从一个动画状态切换或混合到另一动画状态。过渡不仅定义状态之间的混合应该耗费多长时间,而且还定义它们应该在什么条件下激活。您可以设置仅在特定条件成立时才发生过渡。要设置这些条件,请在AnimatorController中指定参数值。例如,您的角色可能具有“巡逻”状态和“睡眠”状态。您可以将巡逻和睡眠之间的过渡设置为仅在“alertness”参数值低于某个水平时才会发
- 【AI大模型前沿】OmniAudio:阿里通义实验室的空间音频生成模型,开启沉浸式体验新时代
寻道AI小兵
AI大模型-前沿技术追踪人工智能音视频开源AIGC语言模型
系列篇章No.文章1【AI大模型前沿】深度剖析瑞智病理大模型RuiPath:如何革新癌症病理诊断技术2【AI大模型前沿】清华大学CLAMP-3:多模态技术引领音乐检索新潮流3【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破4【AI大模型前沿】阿里QwQ-32B:320亿参数推理大模型,性能比肩DeepSeek-R1,免费开源5【AI大模型前沿】TRELLI
- ollama v0.9.6版本发布详解:修复启动屏幕样式及新增工具名称参数支持
福大大架构师每日一题
文心一言vschatgptollama
作为近年来备受瞩目的开源对话式人工智能框架之一,ollama持续更新优化其产品,致力于为开发者带来更稳定、高效的使用体验。2025年7月8日,ollama发布了v0.9.6版本,这一版本在用户界面和API的可用性方面做出了重要改进,进一步增强了开发和集成的便捷性。本文将对ollamav0.9.6版本的更新内容进行全面解析,详细介绍新特性、修复的具体问题、应用示例及最佳实践,帮助开发者快速掌握和应用
- AI人工智能与机器学习的大数据融合应用
AI智能探索者
人工智能机器学习大数据ai
AI人工智能与机器学习的大数据融合应用关键词:AI人工智能、机器学习、大数据、融合应用、数据挖掘摘要:本文深入探讨了AI人工智能与机器学习在大数据融合应用方面的相关内容。首先介绍了研究的背景、目的、预期读者和文档结构,对核心术语进行了清晰定义。接着阐述了AI、机器学习和大数据的核心概念及相互联系,给出了形象的文本示意图和Mermaid流程图。详细讲解了核心算法原理,并通过Python源代码进行说明
- 批量百度移动下拉词和相关搜索词挖掘
打开百度移动网页,会发现我们输入的关键词,然后会出现下拉词已经进入搜索页后会出现相关搜索词,这两部分的关键词也是非常有用的。下面就简单的介绍一下打开百度移动首页,输入关键词后,会自动出来下拉词,这部分下拉词就是需要获取的,打开f12调试工具,可以很简单的看到这是异步加载的关键词,拿到请求地址,在代码进行请求代入参数,就会获得同样的关键词结果了。这部分下拉词抓取还是比较简单的。第二部分是相关词的抓取
- 上位机软件开发
深圳市由你创科技
上位机开发c语言
上位机软件开发是指开发用于与下位机(如单片机、PLC、传感器、嵌入式设备等)进行通信、数据交互及控制的计算机端软件。这类软件通常需要实现数据采集、实时监控、参数配置、数据分析及可视化等功能。以下是开发上位机软件的关键步骤和技术要点:一、开发流程需求分析明确功能需求:数据采集频率、通信协议、界面交互、数据存储方式等。确定硬件接口:串口(RS232/RS485)、USB、TCP/IP、CAN总线、Mo
- 408考研逐题详解:2010年第22题——显存带宽
CS创新实验室
考研复习408考研计算机考研408真题解析
2010年第22题假定一台计算机的显示存储器用DRAM芯片实现,若要求显示分辨率为1600×1200,颜色深度为24位,帧频为85Hz,显存总带宽的50%用来刷新屏幕,则需要的显存总带宽至少约为()A.245Mbps\qquadB.979Mbps\qquadC.1958Mbps\qquadD.7834Mbps解析本题主要考查显存总带宽的计算方法,涉及计算机显示系统的基本参数,包括分辨率、颜色深度、
- MAXCC可编程中控集成音频处理器功能全解析
geffen1688
中控主机3dweb3css3avs3
格芬MAXCC可编程中控集成音频处理器功能全解析一、技术架构与核心功能格芬MAXCC可编程中控矩阵一体机(如GF-MIXCC系列)通过高度集成化设计,将中控系统、音频矩阵、视频矩阵及环境控制功能融为一体,其音频处理能力尤为突出:音频矩阵与混音功能8进8出音频矩阵:支持Dante网络音频传输,采样率达24bit/48KHz,配备高性能A/DD/A转换器和32-bit浮点DSP处理器,确保音频信号的高
- 4K超高清无缝切换与画面分割矩阵
格芬科技4K超高清无缝切换与画面分割矩阵技术解析格芬科技作为音视频传输与控制领域的领先企业,其4K超高清无缝切换与画面分割矩阵产品以高性能、高灵活性和高可靠性为核心优势,广泛应用于会议室、指挥中心、舞台演出、教育培训等场景。以下从产品特性、技术规格、应用场景及选型建议四个维度进行详细解析:一、核心产品与技术特性4K@60Hz超高清支持分辨率与刷新率:格芬科技矩阵产品(如GF-HDMI0404U、G
- HDMI高清矩阵与无缝拼接矩阵 OEM定制控标
geffen08
TPHD141Kvc-1g711es13
HDMI高清矩阵与无缝拼接矩阵:GEFFEN/GF-MIX系列介绍GEFFEN/GF-MIX系列矩阵是一款集成了高性能、高灵活性和高可靠性于一身的音视频处理设备,特别适用于需要高清视频信号切换、拼接和显示的场合。HDMI高清矩阵主要功能与特点:高清视频信号切换:GEFFEN/GF-MIX系列HDMI高清矩阵支持多路HDMI输入和多路HDMI输出,能够轻松实现高清视频信号之间的快速切换。无缝切换技术
- 无缝矩阵支持音频分离带画面分割功能的全面解析
geffen1688
分类分布式
一、技术原理与实现方式1. 音频分离技术核心功能:HDMI无缝矩阵通过硬件或软件实现音频加嵌与分离功能,支持多设备音频的独立处理与增强。实现方式:音频加嵌:将外部音频信号(如麦克风、调音台)嵌入HDMI信号中传输,适用于家庭影院、会议系统等场景。音频分离:将HDMI信号中的音频独立输出至外部设备(如音响、音频处理器),支持多通道数字音频的交叉切换。技术支撑:采用32bitARM核心芯片(
- 基于STM32单片机的物联网温室玫瑰种植系统
文章目录一、目的和意义二、项目内容和功能介绍三、效果图四、资料获取一、目的和意义基于STM32单片机的物联网温室玫瑰种植系统介绍一、系统概述基于STM32单片机的物联网温室玫瑰种植系统,是集环境监测、自动控制、远程管理于一体的智能化农业解决方案。该系统以STM32为核心控制器,通过传感器实时采集温室内的温度、湿度、光照、二氧化碳浓度、土壤温湿度及氮磷钾含量等关键参数,结合物联网技术实现数据远程传输
- 基于STM32单片机的考勤打卡系统
文章目录一、系统概述二、项目内容和功能介绍三、效果图四、资料获取一、系统概述基于STM32单片机的考勤打卡系统介绍一、系统概述基于STM32单片机的考勤打卡系统是一种集数据采集、身份识别、记录存储与远程管理于一体的智能化考勤解决方案。该系统以STM32微控制器为核心,通过非接触式识别技术(如RFID、指纹、人脸识别)或传统输入方式(如按键、密码)快速采集员工考勤信息,结合实时时钟模块(RTC)记录
- 基于FPGA的二维FFT实现
廉连曼
基于FPGA的二维FFT实现【下载地址】基于FPGA的二维FFT实现本项目提供了一种基于FPGA的高效二维FFT实现方案,专为数字信号处理和图像处理领域设计。通过并行使用两个一维FFT单元,本方案显著提升了二维FFT变换的计算效率,并基于Xilinx的FFTIP核,确保易于集成到其他FPGA设计中。该方案适用于各类频谱分析场景,尤其适合图像处理系统。经过Verilog编程和Modelsim仿真测试
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$