- Linux下编译并打包MNN项目迁移至其他设备
AI小小怪
Linux系统常用包的编译MTCNNlinuxmnnopencv
1.构建项目结构该项目是利用MNN框架对MTCNN网络进行推理,实现对目标的实时检测运行环境:Linux相关库:opencv,MNN先给出项目的总体结构,如下:mtcnn_mnn/├──include/│├──opencv2/#OpenCV的头文件│├──MNN/#MNN的头文件│└──mtcnn.h#项目内部的头文件├──lib/│├──libopencv_core.so#OpenCV的动态库│
- 批量跨帧提取人脸视频中的脸部区域帧图像python
qq_37256906
PythonMTCNN人脸识别视频处理图像截取
代码实现功能1、所有人脸视频在一个文件夹中。2、跨帧提取帧图像。3、截取帧图像的脸部区域。3、将截取到的所有脸部图像保存到新文件夹中。代码语言:python3.6#这个代码实现了批量跨帧提取视频帧图像,并使用MTCNN截取帧图像中的脸部区域,然后保存#(1)视频来自一个文件夹中#(2)截取的人脸图像会全部存在新文件夹中importosimportcv2frommtcnn.mtcnnimportMT
- 基于Facenet和MTCNN的人脸识别系统(UI,python)
xj30
人脸识别transformer毕业设计计算机视觉tensorflowpytorch
项目简述:因为在现实生活中,在进行人脸识别时,会受到多种影响因素,如光线、遮挡、口罩等,这些因素都可能导致人脸识别的准确率出现下降。另外一个问题是,一般的人脸识别算法并不能识别所有的人脸,在不同的光照条件下,或者戴口罩情况下,就会影响人脸识别的准确率。本系统亮点在于使用FaceNet算法训练出了戴口罩人脸识别模型,可以实现是否佩戴口罩的识别及已注册人脸在佩戴口罩时的身份识别,达到高准确度快速识别。
- MTCNN 人脸识别
狗头鹰
GraduationDesignROSDemoopencv计算机视觉python
前言此处介绍强大的MTCNN模块,给出demo,展示MTCNN的OOP,以及ROS利用C++节点,命令行调用脚本执行实际工作的思路。MTCNNScriptimportargparseimportcv2frommtcnnimportMTCNNimportosclassMTCNNProcessor:def__init__(self):"""初始化MTCNN检测器和绘图配置"""self.detecto
- 计算机视觉:经典数据格式(VOC、YOLO、COCO)解析与转换(附代码)
全栈你个大西瓜
人工智能计算机视觉YOLO目标跟踪人工智能数据标注目标检测COCO
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络(附代码)第五章:计算机视觉:神经网络实战之手势识别(附代码)第六章:计算机视觉:目标检测从简单到容易(附代码)第七章:MTCNN人脸检测技术揭秘:原理、实现与实战(附代码)第八章:探索YOLO技术:目标检测的高
- 生成对抗网络(GAN):从概念到代码实践(附代码)
全栈你个大西瓜
人工智能计算机视觉人工智能GAN网络对抗学习手势识别生成器与鉴别器生成对抗网络
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络(附代码)第五章:计算机视觉:神经网络实战之手势识别(附代码)第六章:计算机视觉:目标检测从简单到容易(附代码)第七章:MTCNN人脸检测技术揭秘:原理、实现与实战(附代码)第八章:探索YOLO技术:目标检测的高
- MTCNN 人脸检测技术揭秘:原理、实现与实战(附代码)
全栈你个大西瓜
人工智能计算机视觉人工智能MTCNN人脸检测卷积神经网络
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络(附代码)第五章:计算机视觉:神经网络实战之手势识别(附代码)第六章:计算机视觉:目标检测从简单到容易(附代码)第七章:MTCNN人脸检测技术揭秘:原理、实现与实战(附代码)第八章:探索YOLO技术:目标检测的高
- face-kkk
山山而川_R
face深度学习
目录一、配置环境1、新建虚拟环境2、配置环境安装包3、下载安装使用环境二、注册新人1、采集照片2、注册新人3、测试视频或摄像头三、配置文件config1、项目配置文件configs/configs.py,用于设置人脸检测模型,特征提取模型二、下面是自己测试用(个人的一个记录,不具备参考意义)MTCNN人脸检测参考项目:GitHub-Sierkinhane/mtcnn-pytorch:Afacede
- 深度学习论文精读(7):MTCNN
hwl19951007
计算机视觉论文精读
深度学习论文精读(7):MTCNN论文地址:JointFaceDetectionandAlignmentusingMulti-taskCascadedConvolutionalNetworks译文地址:https://zhuanlan.zhihu.com/p/37884254参考博文1:https://zhuanlan.zhihu.com/p/38520597官方地址:https://kpzhan
- MTCNN人脸检测算法
samuelwang_ccnu
深度学习
人脸检测是指识别数字图像中的人脸。人脸检测可以视为目标检测的一种特殊情况。在目标检测中,任务是查找图像中特定类的所有对象的位置和大小。例如行人和汽车。在人脸检测中应用较广的算法就是MTCNN(Multi-taskCascadedConvolutionalNetworks的缩写)。MTCNN算法是一种基于深度学习的人脸检测和人脸对齐方法,它可以同时完成人脸检测和人脸对齐的任务,相比于传统的算法,它的
- 人脸识别算法MTCNN论文解读
纸上得来终觉浅~
图像处理paper阅读人脸识别mtcnn
论文名称:JointFaceDetectionandAlignmentusingMulti-taskCascadedConvolutionalNetworks论文地址:https://www.lao-wang.com/wp-content/uploads/2017/07/1604.02878.pdf1、MTCNN原理MTCNN,Multi-taskconvolutionalneuralnetwor
- MTCNN训练
迷若烟雨
人脸识别tensorflow深度学习caffe
MTCNN是当前效果最好的开源人脸检测算法之一,作者只提供了训练好的模型以及matlab部署代码,其训练和优化却没有放出来,引发了很多好事者复现如果只是要部署的话可以使用MTCNN,其提供了部署全平台实现,包括C++、python、ncnn和tensorflow,还有加速版本和opencv直接加载版本,是所有版本中的集大成者如果想了解算法原理,可以参考MTCNN_Step_by_Step本文的训练
- 【人脸识别系列】从知名DeepFace人脸识别库入手详解人脸识别---第三部分DeepFace库使用介绍之人脸检测模型介绍
Hello_WOAIAI
CV人脸识别目标检测计算机视觉视觉检测图像处理YOLOopencv
【人脸识别系列】从知名DeepFace人脸识别库入手详解人脸识别---第三部分DeepFace库使用介绍之人脸检测器介绍前言DeepFace库人脸检测器OpenCV人脸检测器RetinaFace人脸检测器mtcnn人脸检测器sdd人脸检测器dlib人脸检测器mediapipe人脸检测器yolov8人脸检测器人脸识别系列其他文章【人脸识别系列】从知名DeepFace人脸识别库入手详解人脸识别—第一部
- 人脸识别数据集整理
想努力的人
人脸识别深度学习人工智能计算机视觉
转自:人脸识别数据集整理-陈晓涛-博客园insightface提供整理了mtcnn裁剪112x112,mxnet二进制方式保存的数据集https://github.com/deepinsight/insightface/wiki/Dataset-Zoo人脸识别训练数据集:CASIA-Webface(10Kids/0.5Mimages)CASIAWebFaceDataset是一个大规模人脸数据集,主
- 人脸识别 基于MTCNN网络的人脸检测与对齐算法(MTCNN代码复现)
郭庆汝
MTCNN人脸识别
人脸识别基于MTCNN网络的人脸检测与对齐算法(MTCNN代码复现)论文背景人脸检测与人脸对齐意义论文的研究成果人脸检测的研究趋势论文采用的方法思路阶段一阶段二:阶段三卷积网络设计层面Loss损失函数的设定面部分类边界框回归人脸关键点定位L2范数在线困难挖掘论文实验数据集网络模块代码实现激活函数P-Net模块代码R-Net模块代码O-Net图像处理过程中图像金字塔MTCNN项目代码实现关于训练流程
- MTCNN理论笔记
榴莲薄饼
Multi-taskCascadedConvolutionalNetworks(MTCNN)开源资源:论文链接:https://arxiv.org/ftp/arxiv/papers/1604/1604.02878.pdfGithub链接(tensorflow版本):https://github.com/AITTSMD/MTCNN-Tensorflow1.MTCNN训练过程1.1datainput:
- 人脸检测与人脸特征点定位
※海绵※的笑~
人脸识别人脸识别
本节内容:▸1.人脸识别发展介绍——从非深度到深度▸2.人脸识别的难点▸3.人脸识别的评测方法▸4.重点几种模型的原理理讲解(MTCNN/FaceNet(OpenFace))▸5.TensorFlow实现的MTCNN+FaceNet的人脸检测▸6.推荐的开源的人脸检测项⽬目非深度检测人脸的原理:用一个固定大小的区域不断的遍历整个画面,每一个框和训练的结果做比对(或者是分类),比对结果(分类结果)若
- 移动端unet人像分割模型--1
xiexiecn
移动端神经网络深度学习mxnetncnnunet
个人对移动端神经网络开发一直饶有兴致。去年腾讯开源了NCNN框架之后,一直都在关注。近期成功利用别人训练好的mtcnn和mobilefacenet模型制作了一个ios版本人脸识别swift版本demo。希望maskrcnn移植到ncnn,在手机端实现一些有趣的应用。因为unet模型比较简单,干脆就从这个入手。基本的网络基于keras版本:https://github.com/TianzhongSo
- 用mtcnn+keras+facenet实现简易的人脸识别
胖头鱼青年
人工智能-人脸识别tensorflow人脸识别深度学习人工智能
人工智能-人脸识别采用mtcnn+keras+facenet深度学习算法文章目录人工智能-人脸识别采用mtcnn+keras+facenet深度学习算法前言:在前段时间的挑板杯和互联网+的双赛中,我们和校企合作的项目疲劳驾驶检测预警,在经专家点评后发现其中的人脸识别功能算法需要完善,所以经过多方学习,根据哔站大牛[**Bubbliiiing**](https://space.bilibili.co
- 常见人脸检测器, 调用摄像头检测人脸
小啊磊_Vv
深度学习和视觉项目实战opencvpython人工智能深度学习
常见人脸检测器,调用摄像头检测人脸文章目录常见人脸检测器,调用摄像头检测人脸@[TOC](文章目录)前言一、导入相关包二、Haar检测器三、Hog检测器四、CNN检测器五、SSD检测器六、MTCNN检测器七、Opencv结合检测器检测人脸7.1Hog检测器7.2Haar检测器前言主要介绍几种常见的人脸检测器,并结合opencv调用摄像头进行人脸的实时检测。一、导入相关包importcv2impor
- MIGraphX推理框架第八章-动态Shape
染念
#MIGraphX推理框架人工智能深度学习c++pythonlinuxMIGraphX推理框架
第七章介绍了MIGraphX的性能优化,可以在此跳转进行回顾第八章-动态Shape动态shape动态shape的限制支持动态Shape的模型不支持动态shape的解决方案动态shape在实际业务中,我们会遇到有多种输入shape的模型,比如CV领域的目标检测模型MTCNN,SSD和YOLO,在MIGraphX中实现动态shape主要包含下面几个步骤:设置环境变量:exportMIGRAPHX_DY
- 基于MTCNN和Arc-Loss的人脸识别(详细版)
雨落的太敷衍..
AI深度学习算法python神经网络计算机视觉
文章目录一、人脸识别介绍1.1发展历史1.2什么是人脸识别?二:人脸识别步骤2.1人脸侦测2.2特征提取2.3特征对比三:人脸识别难点四:人脸检测原理五:YOLO和MTCNN的比较六:人脸识别的方法6.1早期的机器学习方法(2012年之前):6.2现在常用的深度学习方法(2016年之后):七:人脸特征定位八:人脸识别应用案例九:人脸检测模型MTCNN9.1什么是MTCNN?9.2为什么学习MTCN
- canvas+face-api人脸实时检测
即将牛逼的蛋蛋
实时检测和拍照检测的区别就在于,识别的准确度实时监测的需要根据视频的帧数(当然没多少帧检测一次完全取决于我们)去检测,面部识别只是静态的照片,所以实时检测只采取了Mtcnn检测和面部识别,速度提升,并且实时检测,缺点就是准确度下降上代码:下一篇文章会结合nodejs完成一个前端识别,后端检测的一个功能。视频识别人脸constcanvas=document.getElementById('overl
- facenet 人脸模型训练
reset2021
python人脸识别python人脸识别
人脸检测与特征描述是人脸相关项目应用的基础(包括人脸识别,人脸认证以及人脸聚类等)本文以mtcnn与facent算法为基础,讲述怎样训练自己的人脸模型。主题框架采用的是facenet源码,依据具体需求,对facnet做了一定的修改,facenet源码见https://github.com/davidsandberg/facenet1、数据集收集由于目前开源的数据集中,大多数都是欧美人士的,直接用这
- 多尺度特征融合总结(金字塔结构)
m0_53955985
其他计算机视觉人工智能深度学习
多尺度特征融合参考连接:多尺度融合介绍MTCNN论文解读图像金字塔----高斯和拉普拉斯一、什么是多尺度?所谓多尺度,实际上就是对信号的不同粒度的采样,通常在不同的尺度下我们可以观察到不同的特征,从而完成不同的任务通常来说粒度更小/更密集的采样可以看到更多的细节,粒度更大/更稀疏的采样可以看到整体的趋势二、深浅层蕴含的不同信息深层网络的感受野比较大,语义信息表征能力强,但是特征图的分辨率低,几何信
- 在 Ubuntu20.02下编译 FaceRecognition_MTCNN_FaceNet
Tonyfield
neo4j
1.compileFaceRecognition_MTCNN_FaceNet-mastergitclonehttps://github.com/Chanstk/FaceRecognition_MTCNN_FaceNet.gitcdFaceRecognition_MTCNN_FaceNetmkdirbuild&&cdbuildcmake.. &&make+----------------------
- 2019-09-28 MTCNN 实验部分详解2
sharer7717
image.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.png
- 【人脸检测】Compact Cascade CNN和MTCNN算法
城市中迷途小书童
【文章导读】目前人脸识别技术已经遍地开花,火车站、机场、会议签到等等领域都有应用,人脸识别的过程中有个重要的环节叫做人脸检测,顾名思义就是在一张图片中找出所有的人脸的位置,早期的人脸检测是用人工提取特征的方式,训练分类器,比如opencv中自带的人脸检测器使用了haar特征,早期的这种算法自然是鲁棒性、抗干扰性太差,本文主要来介绍近几年的几种用卷积神经网络做的经典算法。1、CompactCasca
- 下载安装mtcnn 使用国内镜像源在cmd窗口或pycharm terminal窗口pip install mtcnn报错
weixin_44194001
pycharmpythonpip
下载安装MTCNNERROR:Couldnotfindaversionthatsatisfiestherequirementmtcnn(fromversions:none)ERROR:NomatchingdistributionfoundformtcnnERROR:Couldnotfindaversionthatsatisfiestherequirementmtcnn(fromversions:n
- tensorflow对深度学习生成的pb模型文件的保存与读取及节点和张量的输出
loveliuzz
深度学习
一、pb模型的保存1、MTCNN人脸检测算法中官网训练好的参数保存在三个文件名称分别为:det1.npy、det2.npy、det3.npy的后缀名为.npy文件中(.npy文件也是一种以二进制保存的文件),将.npy文件转换为.pb模型文件的方法通过以下代码实现:importtensorflowastfimportdetect_faceimportosfromtensorflow.python.
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu