- 论文学习笔记 VMamba: Visual State Space Model
Wils0nEdwards
学习笔记
概览这篇论文的动机源于在计算机视觉领域设计计算高效的网络架构的持续需求。当前的视觉模型如卷积神经网络(CNNs)和视觉Transformer(ViTs)在处理大规模视觉任务时展现出良好的表现,但都存在各自的局限性。特别是,ViTs尽管在处理大规模数据上具有优势,但其自注意力机制的二次复杂度对高分辨率图像处理时的计算成本极高。因此,研究者希望通过引入新的架构来降低这种复杂度,并提高视觉任务的效率。现
- 论文学习1----理解深度学习需要重新思考泛化Understanding deep learning requires rethinking generalization
夏洛的网
机器学习深度学习论文深度学习神经网络
——论文地址:Understandingdeeplearningrequiresrethinkinggeneralization1、有关新闻1.1新闻一:参考1:机器之心尽管深度人工神经网络规模庞大,但它们的训练表现和测试表现之间可以表现出非常小的差异。传统的思考是将小的泛化误差要么归结为模型族的特性,要么就认为与训练过程中的正则化技术有关。通过广泛的系统性实验,我们表明这些传统的方法并不能解释大
- 半监督语义分割论文学习记录
西瓜真的很皮啊
半监督语义分割深度学习机器学习人工智能
Semi-SupervisedSemanticSegmentationwithCross-ConsistencyTraining1.1motivation一致性训练的目的是在应用于输入的小扰动上增强模型预测的不变性。因此,学习的模型将对这样的小变化具有鲁棒性。一致性训练的有效性在很大程度上取决于数据分布的行为,即集群假设,其中类必须由低密度区域分隔。在语义分割中,在输入中,我们没有观察到低密度区域
- 2019-1-27晨间日记
紫薇忘了水葫芦
在柳州的第二天起床:八点半左右天气:晴心情:好像很复杂,一会儿开心一会儿不开心纪念日:参加了晗大姐的婚礼任务清单昨日完成的任务,最重要的三件事:⒈把之前的论文题目整理了一遍⒉参加了婚礼⒊送了礼物改进:要静下来多看些书做些运动,多思考。习惯养成:早睡早起,饮食清淡周目标·完成进度开始读论文学习·信息·阅读阅读健康·饮食·锻炼饮食清淡,多锻炼人际·家人·朋友多联系工作·思考怎么把自己的工作做得更好最美
- 语义分割系列之FCN、DeeplabV1、V2、V3、V3Plus论文学习
Diros1g
学习深度学习计算机视觉
FCNFullyConvolutionalNetworks论文:FullyConvolutionalNetworksforSemanticSegmentation地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf特点:用全卷积替
- 论文学习笔记 POSEIDON: Privacy-Preserving Federated Neural Network Learning
JiangChSo
论文学习深度学习机器学习神经网络算法分布式
论文学习笔记POSEIDON:Privacy-PreservingFederatedNeuralNetworkLearningNDSS2021录用文章目录论文学习笔记POSEIDON:Privacy-PreservingFederatedNeuralNetworkLearning一、机器学习1.机器学习(ML)中的挑战2.隐私保护机器学习(PPML)二、POSEIDON方案1.系统和威胁模型2.方
- 论文学习——Vector Quantized Diffusion Model for Text-to-Image Synthesis
客院载论
音频生成学习
文章目录引言正文Abstract文章的核心VQ潜在空间适合文本转图片生成VQDiffusion的比起自回归和GAN的其他模型的成果IntroductionNLP的成功给图片生成的启发自回归模型的单向误差解释预测误差累积VQDiffusion能够解决预测误差累计和单向误差两个问题解决单向误差的方式——每一次预测都是考虑所有token的上下文信息解决错误累积的方式——使用基于掩码和替换的扩散策略模型测
- Python论文学习 -- 第二章 --- Python基础知识
Metallic Cat
学习
1.cmd命令器中如果想终止命令的话可以在终止行输入exit()函数调用停止命令一.字面量二.注释---对代码进行解释说明1.在print函数中:print(a,"asd",c)输出的结果为a变量对应的值+asd+c变量对应的值如:则输出的结果为:往type()函数中输入数据,它会返回数据的类型给我们,然后我们可以用print()函数将数据类型打出来1.值得注意的是变量本身是没有类型的,它只是一个
- 论文学习笔记:PoseFix: Model-agnostic General Human Pose Refinement Network
wangyc1208
姿态估计
论文:https://arxiv.org/abs/1812.03595代码:https://github.com/mks0601/PoseFix_RELEASE—————————————————————————————————————————————————目标:多人姿态估计:本篇论文主要工作是利用一个人体姿势优化网络,从输入图像和姿势中对人体姿态进行优化。大概的效果如下图:———————————
- 2021-9-23晨间日记
言二yaner
今天是什么日子起床:7:40就寝:23:00天气:美好心情:美好纪念日:无任务清单昨日完成的任务,最重要的三件事:投稿改进:想到就做到习惯养成:专注自己,提升自己周目标·完成进度准备再写一篇论文学习·信息·阅读多阅读,多学习健康·饮食·锻炼早饭:小米粥,鸡蛋,烧麦中饭:真味卤,杨枝甘露晚饭:黑米粥锻炼:一小时左右人际·家人·朋友一切都是最好的安排,虽然没有过去,但也有属于自己的收获工作·思考凡事早
- 论文学习记录之Deep-learning seismic full-waveform inversion for realistic structuralmodels
摘星星的屋顶
论文深度学习人工智能
一、ABSTRACT—摘要标题:Deep-learningseismicfull-waveforminversionforrealisticstructuralmodels(用于真实结构模型的深度学习地震全波形反演)作者:BinLiu1,SenlinYang2,YuxiaoRen2,XinjiXu3,PengJiang2,andYangkangChen4(和SeisInvNet有共同作者,应该是同
- 论文学习记录之SeisInvNet(Deep-Learning Inversion of Seismic Data)
摘星星的屋顶
论文人工智能
目录1INTRODUCTION—介绍2RELATEDWORKS—相关作品3METHODOLOGYANDIMPLEMENTATION—方法和执行3.1方法3.2执行4EXPERIMENTS—实验4.1数据集准备4.2实验设置4.3基线模型4.4定向比较4.5定量比较4.6机理研究5CONCLUSION—结论1INTRODUCTION—介绍地震勘探是根据地震波在大地中的传播规律来确定地下地层结构的一种
- 基于变长频带选择的JPEG图像可逆数据隐藏-文献学习
凌峰的博客
学习算法计算机视觉
论文学习原文题目:ReversibleDataHidingofJPEGImageBasedonAdaptiveFrequencyBandLength发表期刊:TCSVT2023(中科院1区)作者:NingxiongMao,HongjieHe,FanChen,YuanYuan,LingfengQu摘要JPEG图像在互联网上被广泛使用。基于quantifieddiscretecosinetransfo
- BASNet:Boundary-aware salient object detection
Kun Li
应用算法目标检测计算机视觉
CVPR2019开源论文|BASNet:关注边界的显著性检测本文提出一种基于深度监督学习的前景提取构架BASNet,其在边缘感知上有优异的表现。https://mp.weixin.qq.com/s/fjq4UyDMN9Z9lvNZ7aNLWABASNet:Boundary-AwareSalientObjectDetection论文学习_basnet:boundary-awaresalientobj
- Nerf-Wild神经辐射场论文学习笔记 Neural Radiance Fields for Unconstrained Photo Collections
出门吃三碗饭
Nerf学习记录三维重建学习笔记
前言:本文为记录自己在Nerf学习道路的一些笔记,包括对论文以及其代码的思考内容。公众号:AI知识物语B站后续同步更新讲解本篇文章主要针对其数学公式来学习其内容,欢迎批评指正!!!(代码下篇出)1:摘要提出基于学习(learning-based)方法,使用野外照片的非结构化集合(unstructuredcollectionsofin-the-wildphotographs)来合成复杂场景。之前的N
- GroupMixFormer:Advancing Vision Transformers with Group-Mix Attention论文学习笔记
athrunsunny
Transformer学习笔记深度学习计算机视觉transformer
论文地址:https://arxiv.org/pdf/2311.15157.pdf代码地址:https://github.com/AILab-CVC/GroupMixFormer摘要:ViT已被证明可以通过使用多头自注意力(MHSA)对远程依赖关系进行建模来增强视觉识别,这通常被表述为Query-Key-Value计算。但是,从“Query”和“Key”生成的注意力图仅捕获单个粒度的token-t
- 论文学习——基于查询的workload预测(CMU)
_zhj
机器学习数据库
一、简介论文题目:Query-basedWorkloadForecastingforSelf-DrivingDatabaseManagementSystems发表在2018SIGMOD,来自cmu的数据库组(这个组真的很厉害)这篇论文主要讲数据库workload预测的问题。因为要实现数据库self-driving(如选择合适的时机在合适的列上自动创建索引),应该根据将要到来的查询对数据库进行优化,
- 第六十八周周报
童、一
周报深度学习
学习目标:项目论文学习时间:2023.12.23-2023.12.29学习产出:一、项目这周后两天在根据吉安方面的需求优化SQL,提升性能二、论文这周周六在杨老师的带领下仔细改了论文前两段,后面几天自己把剩下的改完了,目前还在给杨老师看。实验方面,由于LSUN一直跑不出好的效果,已经转为STL10和CelebA,预计得下周才能出结果。其他时间都在搞开题报告的东西。
- DN-DETR论文学习
彭祥.
DETR系列学习深度学习计算机视觉
摘要本文提出了一种新颖的去噪训练方法,以加快DETR(DEtectionTRansformer)训练,并加深了对类DETR方法的慢收敛问题的理解。我们表明,缓慢收敛是由于二分图匹配的不稳定性导致早期训练阶段的优化目标不一致。为了解决这个问题,除了匈牙利损失之外,我们的方法还向Transformer解码器馈送了带有噪声的GT边界框,并训练模型重建原始框,从而有效地降低了二分图匹配难度,并加快了收敛速
- MS-DETR: Efficient DETR Training with Mixed Supervision论文学习笔记
athrunsunny
Transformer学习笔记transformer深度学习算法
论文地址:https://arxiv.org/pdf/2401.03989.pdf代码地址(中稿后开源):GitHub-Atten4Vis/MS-DETR:Theofficialimplementationfor"MS-DETR:EfficientDETRTrainingwithMixedSupervision"摘要DETR通过迭代生成多个基于图像特征的目标候选者,并为每个真实目标分配一个候选者,
- 经典论文学习:Attention Is All You Need(Transformer)
才能我浪费
AI应用深度学习机器学习人工智能
1,概述《AttentionIsAllYouNeed》是一篇由GoogleDeepMind团队在2017年发表的论文,该论文提出了一种新的神经网络模型,称为Transformer模型,用于自然语言处理任务。该模型的创新点在于使用了一种称为“自注意力机制(self-attentionmechanism)”的技术,以取代传统的循环神经网络(RNN)和卷积神经网络(CNN)等结构,这使得模型在处理序列数
- 2022-6-17晨间日记
七翎
今天是什么日子起床:7.30(因为今天考科四,好困啊!!!)就寝:科四成功考过,熬个小夜(嘻嘻)天气:昨天下雨了,今天超凉快!心情:开心更多一点纪念日:纪念我拿上驾照的日子任务清单昨日完成的任务,最重要的三件事:刷完10套科四卷子✔习惯养成:早睡早起(尽量吧)周目标·完成进度1.完成编程课程2.看完导师论文学习·信息·阅读看了网文(嘻嘻)放纵一下健康·饮食·锻炼吃了很多不健康的食物,但很快乐!人际
- ChatGPT可以帮你做什么?
SiKi学院
chatgpt人工智能
学习利用ChatGPT学习有很多,比如:语言学习、编程学习、论文学习拆解、推荐学习资源等,使用方法大同小异,这里以语言学习为例。在开始前先给GPT充分的信息:(举例)【角色】充当一名有丰富经验的英语老师【背景】我是一名英语雅思备考的学生,想进行英语相关学习(这里最好说明是帮助你做什么练习,如口语)【任务】你要和我进行对话,根据我输入的内容,去进行讲解和说明【要求】我希望你首先可以列举出雅思备
- 【论文学习】SOLVING INVERSE PROBLEMS IN MEDICAL IMAGING WITH SCORE-BASED GENERATIVE MODELS
Lyrig~
神经网络图像修复(ImageRestoration)学习机器学习算法
【论文学习】SOLVINGINVERSEPROBLEMSINMEDICALIMAGINGWITHSCORE-BASEDGENERATIVEMODELS前言相关概念线性逆问题基于分数的生成模型扰动过程逆过程采样利用基于分数的生成模型求解逆问题一种简便的线性测量过程形式将给定的观测结果融合进无条件采样过程前言好不容易写完了这么长的一篇,整体看来,这篇文章更像是对去噪过程的一个改进。通过在不同时间步引入
- 论文学习 使用基于NeRF的精炼特征从3D感知Diffusion模型下实现单视点下的人工重建
Lyrig~
学习3d人工智能
论文学习使用基于NeRF的精炼特征从3D感知Diffusion模型下实现单视点下的人工重建论文连接前言摘要介绍相关工作2.13D生成的扩散模型2.2单视点下的新视点生成神经场(NeRF)以外的方法基于神经场(NeRF)的方法背景3.1图片条件NeRF3.2无几何视图合成NerfDiff论文连接NerfDiff:Single-imageViewSynthesiswithNeRF-guidedDist
- 【论文学习】InstructGPT:Training language models to follow instructions with human feedback
Shackles Lay
学习语言模型自然语言处理
前言:语言模型的输出依赖于预训练的数据集,研究者想要探索无监督领域的模型,使其仅仅依赖无标签的数据就可以实现不错的效果,为了让模型的泛化性能尽可能的强,研究者会提供尽可能大的数据集。但这样的训练方法存在两个问题:一、有效性。模型的性能依赖于训练时使用的文本,但是研究者并不知道无标签的大批量的数据集是否可以使模型学习到解决指定任务的能力,可能对于特定领域来说,模型根本没见过这样的数据;二、安全性,模
- 畸变矫正-深度学习相关论文学习
六个核桃Lu
畸变矫正深度学习学习人工智能
目录DocTr:DocumentImageTransformerforGeometricUnwarpingandIlluminationCorrectionSimFIR:ASimpleFrameworkforFisheyeImageRectificationwithSelf-supervisedRepresentationLearningModel-FreeDistortionRectificat
- A Fast Learning Algorithm for Deep Belief Nets - 论文学习
Mr,yu
论文笔记论文笔记MachineLearningDeepLearning
文章目录摘要介绍互补先验一个带约束权的无限有向模型限制玻尔兹曼机和对比散度学习一种转换表示的贪婪学习算法SomeIdeasBasedonDBNNonlinearDimensionalityReductionLearningSemanticAddressSpace(SAS)forFastDocumentRetrievalLearningNonlinearEmbeddings参考文献摘要explain
- 周四 2020-03-12 07:15 - 24:00 晴 06h54m
么得感情的日更机器
概述 早上6点20被闹钟搞醒,关了接着睡,7:14醒听听力、背单词、学习强国,练字,8:00下楼吃饭,8:30上楼读口语、做日计划。上午从9:00开始锁机学习相应SLAM论文综述,中间锻炼五分钟,跳的我腿好疼。11:00-11:35,对论文学习内容进行总结,编写论文记录文档。下午13:00-14:30看动漫,14:30-16:20整理计算机基本知识的文档。晚上看着手机发呆,然后讨论论文的事情,总
- smpl-x论文学习-部分翻译
ipv-tao
图形学三维重构
论文地址:ExpressiveBodyCapture:3DHands,Face,andBodyfromaSingleImage知乎大佬的讲解:https://zhuanlan.zhihu.com/p/137235901另一位大佬的讲解:https://posts.careerengine.us/p/5f23a5898988c12b4302afb61.定性结果和SMPL,SMPL-H相比,表现能力明
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$