环境:ubuntu16.04,ros-kinetic,python2,vscode,opencv,rviz
概要:这节课笔记,新增展示的是,给选定的物体添加3d侦测盒。
介绍3d侦测盒绘制,使用的参考资料以及原理介绍挺多的,个人建议,先看源码部分,再看jupyter notebook里面的原理介绍。
资料准备及预处理可参考博客,https://blog.csdn.net/qq_45701501/article/details/116447770
tracking资料准备:https://blog.csdn.net/qq_45701501/article/details/116586427
0)包创建、编译、运行基本操作参考,可以参考这系列早期博客介绍
1)2d侦测框是3d侦测盒投影得到的
2)3d侦测盒绘制参考博客:
#博客
https://navoshta.com/kitti-lidar/
#源码
https://github.com/navoshta/KITTI-Dataset/blob/master/kitti-dataset.ipynb
重点关注,绘制点云部分,绘制侦测盒部分
其中注意的是,由于年代有点差别,blog内代码部分有变动,本笔记最后最后选择了up主那时候的范例来编写
3)tracking资料名词解析:指的是物体的,height:高,width:宽 ,length:长,物体在相机坐标系中的pos_x,pos_y,pos_z;物体如车子,的旋转角度,如俯视图所看转角:rot_y
4)绘制3d侦测盒参考文档:https://github.com/pratikac/kitti/blob/master/readme.tracking.txt
重点参考里面的3d侦测盒对应的8点坐标的计算公式
x_corners = [l/2, l/2, -l/2, -l/2, l/2, l/2, -l/2, -l/2]^T
y_corners = [0, 0, 0, 0, -h, -h, -h, -h ]^T
z_corners = [w/2, -w/2, -w/2, w/2, w/2, -w/2, -w/2, w/2 ]^T
5)绘制3d侦测盒,需要从tracking资料中读取长宽高、相机坐标系以及转角
6)坐标系转换,需要知道平移矩阵以及旋转矩阵;为了便于计算,将两个矩阵合并,构造新矩阵,方便点在不同坐标系中的转换计算。里面添加的1,被称为齐次坐标(可参考https://zh.wikipedia.org/wiki/%E9%BD%90%E6%AC%A1%E5%9D%90%E6%A0%87
)
7)每帧图片的物体的3d侦测盒,一开始都是属于相机坐标系下的,会看起来有点歪歪的,需要转为激光雷达坐标系下显示。而这个坐标系转换,借助现有的资源https://github.com/charlesq34/frustum-pointnets/blob/master/kitti/kitti_util.py
8)kitti_utils.py在编译器存在报错,但是引用时候,计算是没有问题的,坐标系这些也正常装换并输出。具体原因未知
9)使用marker绘制3d侦测盒,参考http://wiki.ros.org/rviz/DisplayTypes/Marker
,里面的1.3.6 line list
所绘制线时的点顺序可以自定义的(点连接成边,侦测盒的边定义)
10)jupyter notebook预测试:
In[1]
import pandas as pd#读取类似表格的工具
import matplotlib.pyplot as plt#绘制图形的资料包
from mpl_toolkits.mplot3d import Axes3D#绘制3d图像所需包
import numpy as np
import sys
import os
sys.path.append('../src/')
from data_utils import *
In[2]
def draw_point_cloud(ax, points, axes=[0, 1, 2],point_size=0.1, xlim3d=None, ylim3d=None, zlim3d=None):#绘制点云
"""
Convenient method for drawing various point cloud projections as a part of frame statistics.
"""
axes_limits = [
[-20,80],#X axis range
[-20,20],#Y axis range
[-3,3]#Z axis range
]
axes_str=['X','Y','Z']
ax.grid(False)
ax.scatter(*np.transpose(points[:, axes]), s=point_size, c=points[:, 3], cmap='gray')
ax.set_xlabel('{} axis'.format(axes_str[axes[0]]))
ax.set_ylabel('{} axis'.format(axes_str[axes[1]]))
if len(axes) > 2:
ax.set_xlim3d(*axes_limits[axes[0]])
ax.set_ylim3d(*axes_limits[axes[1]])
ax.set_zlim3d(*axes_limits[axes[2]])
ax.xaxis.set_pane_color((1.0,1.0,1.0,0.0))
ax.yaxis.set_pane_color((1.0,1.0,1.0,0.0))
ax.zaxis.set_pane_color((1.0,1.0,1.0,0.0))
ax.set_zlabel('{} axis'.format(axes_str[axes[2]]))
else:
ax.set_xlim(*axes_limits[axes[0]])
ax.set_ylim(*axes_limits[axes[1]])
# User specified limits
if xlim3d!=None:
ax.set_xlim3d(xlim3d)
if ylim3d!=None:
ax.set_ylim3d(ylim3d)
if zlim3d!=None:
ax.set_zlim3d(zlim3d)
In[3]:
DATA_PATH='/home/ylh/data/kitti/RawData/2011_09_26/2011_09_26_drive_0005_sync'#指定绘制所需点云资料所在路径
points=read_point_cloud(os.path.join(DATA_PATH,'velodyne_points/data/%010d.bin'%0))#指定绘制的是第0帧资料
In[4]:
fig = plt.figure(figsize=(20,10))#绘制3d模型必须的
ax = fig.add_subplot(111,projection='3d')#绘制3d模型必须的
ax.view_init(40,150)#指定观察视角
draw_point_cloud(ax,points[::5])#调用函数绘制点云图,[::5]表示5个点绘制一个点在图上,去掉则表示全部点都绘制,但绘制比较慢
In[5]:
fig, ax=plt.subplots(figsize=(20,10))
#figsize=(20,10)指定图形大小,plt.subplots()指定位置和划分方式绘图
#fig代表绘图窗口(Figure);ax代表这个绘图窗口上的坐标系(axis)
draw_point_cloud(ax,points[::5],axes=[0,1])#axes=[0,1]表示绘制0,1轴,也就是xy轴
In[6]:
#读取侦测框信息
df_tracking=read_tracking('/home/ylh/data/kitti/training/label_02/0000.txt')
df_tracking.head()
In[7]:
#3d侦测盒生成函数
#以特殊情况为例,当rot_y=0时,(pos_x,pos_y,pos_z)就是位于侦测盒的下方平面的中心点
#根据资料中的长宽,可以获取下方平面的四角坐标,然后根据高数据,从而获取侦测盒的八个点的坐标
#对于rot_y!=0情况,需要每个点乘以一个旋转矩阵(对相机坐标系中的y轴进行旋转),那么就可以得到
#带有rot_y!=0也就是yaw非0情况,8个顶点坐标(yaw=0情况时)乘以旋转矩阵,可得到新的8个顶点坐标
def compute_3d_box_cam2(h,w,l,x,y,z,yaw):
#return:3xn in can2 coordinate
#rot_y!=0时的旋转矩阵
R = np.array([[np.cos(yaw),0,np.sin(yaw)],[0,1,0],[-np.sin(yaw),0,np.cos(yaw)]])
#8个顶点所对应的xyz坐标(rot_y=0时)
x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2]
y_corners = [0,0,0,0,-h,-h,-h,-h]
z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2]
#做旋转,rot_y=0可视为旋转特例,只不过角度为0而已,然后,让8个顶点坐标与旋转矩阵相乘
corners_3d_cam2 = np.dot(R,np.vstack([x_corners,y_corners,z_corners]))
#由于以下方中心点做旋转的,所以,需要加上该旋转中心点坐标(x,y,z)
corners_3d_cam2 += np.vstack([x,y,z])
return corners_3d_cam2#返回侦测盒8个顶点在相机坐标系中的坐标
In[8]:
#绘制3d侦测盒子函数
def draw_box(ax, vertices, axes=[0, 1, 2], color='black'):
"""
参考https://github.com/pratikac/kitti/blob/master/readme.tracking.txt
Draws a bounding 3D box in a pyplot axis.
Parameters
----------
pyplot_axis : Pyplot axis to draw in.
vertices : Array 8 box vertices containing x, y, z coordinates.
axes : Axes to use. Defaults to `[0, 1, 2]`, e.g. x, y and z axes.
color : Drawing color. Defaults to `black`.
"""
vertices = vertices[axes, :]
connections = [
[0, 1], [1, 2], [2, 3], [3, 0], # Lower plane parallel to Z=0 plane
[4, 5], [5, 6], [6, 7], [7, 4], # Upper plane parallel to Z=0 plane
[0, 4], [1, 5], [2, 6], [3, 7] # Connections between upper and lower planes
]
for connection in connections:
ax.plot(*vertices[:, connection], c=color, lw=0.5)
In[9]:
#指定2号资料物体,输入长宽高以及相机坐标,对其进行3d框框绘制。当rot_y=0时,pos_x,pos_y,pos_z位于长方体下方平面的中心点位置
#corners_3d_cam2表示的是3d侦测盒
corners_3d_cam2 = compute_3d_box_cam2(*df_tracking.loc[2,['height','width','length','pos_x','pos_y','pos_z','rot_y']])
In[10]:
corners_3d_cam2.shape#3d侦测盒形状构造,输入结果(3,8):3表示xyz,8表示长方体
In[11]:
#可视化3d侦测盒
fig = plt.figure(figsize=(20,10))#绘制3d模型必须的
ax = fig.add_subplot(111,projection='3d')#绘制3d模型必须的
ax.view_init(40,150)#指定视角
draw_box(ax,(corners_3d_cam2))#绘制2号资料侦测盒
#输出的盒子是倾斜的,这是因为还没有转换到激光雷达坐标系,还在相机坐标系里面的
In[12]:
#加载负责坐标转换(这里指从相机到激光坐标系转换)的文件,注意复制一份到当前jupyter文件同级位置
from kitti_utils import *
In[13]:
#读取坐标转换文件,from_video=True表示会读取路径中三个.txt坐标转换文件
calib = Calibration('/home/ylh/data/kitti/RawData/2011_09_26/',from_video=True)
#这里表示的是将2号相机坐标系投影到雷达坐标系,也就是坐标转换到雷达坐标系,
#.T表示矩阵转置
corners_3d_velo = calib.project_rect_to_velo(corners_3d_cam2.T).T
corners_3d_velo
In[14]:
#绘制侦测盒
fig = plt.figure(figsize=(20,10))
ax = fig.add_subplot(111,projection='3d')
ax.view_init(40,150)
draw_box(ax,corners_3d_velo)
In[15]:
#将侦测盒和点云图一起绘制出来
fig = plt.figure(figsize=(20,10))
ax = fig.add_subplot(111,projection='3d')
ax.view_init(40,150)
draw_point_cloud(ax,points[::5])
draw_box(ax,corners_3d_velo)
In[16]:
#俯视图方式看转换后的侦测盒和激光点云图
fig, ax = plt.subplots(figsize=(20,10))#绘图必备
draw_point_cloud(ax,points[::5], axes=[0,1])#axes=[0,1]表示绘制xy轴
draw_box(ax,corners_3d_velo,axes=[0,1],color='r')#color='r'表示绘制红色盒子
本节课,因为使用到相机坐标系到激光坐标系的转换,所以增加了一个.py文件,那么,本节课所涉及的一共四个文件:读取资料文件data_utils.py;定义发布函数文件publish_utils.py;负责坐标系转换计算文件kitti_utils.py;执行文件p14_kitti.py。
data_utils.py:
#!/usr/bin/env python
# -*- coding:utf8 -*-
import cv2
import numpy as np
import os
import pandas as pd #用于读取imu资料
IMU_COLUMN_NAMES = ['lat','lon','alt','roll','pitch','yaw','vn','ve','vf','vl','vu',
'ax','ay','az','af','al','au','wx','wy','wz','wf','wl','wu',
'posacc','velacc','navstat','numsats','posmode','velmode','orimode'
]#根据kitti数据集中的名称进行定义的,个人理解是对照c里面的宏定义
TRACKING_COLUMN_NAMES=['frame', 'track_id', 'type', 'truncated', 'occluded', 'alpha',
'bbox_left', 'bbox_top','bbox_right', 'bbox_bottom', 'height',
'width', 'length', 'pos_x', 'pos_y', 'pos_z', 'rot_y']#tracking数据单位
#读取图片路径函数
def read_camera(path):
return cv2.imread(path)
#读取点云路径函数
def read_point_cloud(path):
return np.fromfile(path,dtype=np.float32).reshape(-1,4)
#读取imu资料
def read_imu(path):
df=pd.read_csv(path,header=None,sep=' ')#读取数据
df.columns=IMU_COLUMN_NAMES#给数据赋予单位
return df
#读取trackiing资料
def read_tracking(path):
df=pd.read_csv(path,header=None,sep=' ')#读取tracking资料
df.columns=TRACKING_COLUMN_NAMES#给资料数据添加单位
df.loc[df.type.isin(['Truck','Van','Tram']),'type']='Car'#将这三种车子,统一定义为Car
df=df[df.type.isin(['Car','Pedestrian','Cyclist'])]#只是获取数据集中类型为指定的数据,注意car为重定义类型
return df#返回读取的资料
publish_utils.py:
#!/usr/bin/env python
# -*- coding:utf8 -*-
import rospy
from std_msgs.msg import Header
from visualization_msgs.msg import Marker,MarkerArray#Marker绘制相机视野指示线模块,MarkerArray解决Marker带来发布的不同步问题
from sensor_msgs.msg import Image,PointCloud2,Imu,NavSatFix
from geometry_msgs.msg import Point#Point来自ros包定义,所以需要定义;若不清楚,则需要到ros官网上面查看具体那个包
import sensor_msgs.point_cloud2 as pcl2
from cv_bridge import CvBridge
import numpy as np
import tf
import cv2
FRAME_ID='map'
DETECTION_COLOR_DICT = {'Car':(255,255,0),'Pedestrian':(0,226,255),'Cyclist':(141,40,255)}#颜色字典
#车头朝前,左上点为0,顺时针,0,1,2,3四个点,顶部同样顺时针,依次为(0顶部)4,5,6,7
#侦测盒资料,连线顺序
LINES = [[0, 1], [1, 2], [2, 3], [3, 0]] # lower face
LINES+= [[4, 5], [5, 6], [6, 7], [7, 4]] #upper face
LINES+= [[4, 0], [5, 1], [6, 2], [7, 3]] #connect lower face and upper face
LINES+= [[4, 1], [5, 0]] #front face 对角线表示叉叉以表示正前方
#侦测盒存在的时长
LIFETIME = 0.1
#发布图片函数
def publish_camera(cam_pub,bridge,image,boxes,types):#增加参数boxes、types
#绘制框框到图片中
for typ,box in zip(types,boxes):#给对应类型每个box绘制对应颜色图线
top_left=int(box[0]),int(box[1])#box的左上角点,像素为整数,所以需要转换int类型
bottom_right=int(box[2]),int(box[3])#box的右下角点
#绘制框框,依次指定图片、左上角点、右下角点、根据类型不同给的颜色(bgr)、线粗细
cv2.rectangle(image,top_left,bottom_right,DETECTION_COLOR_DICT[typ],2)
cam_pub.publish(bridge.cv2_to_imgmsg(image,"bgr8"))
#发布点云函数
def publish_point_cloud(pcl_pub,point_clond):
header=Header()
header.stamp=rospy.Time.now()
header.frame_id=FRAME_ID
pcl_pub.publish(pcl2.create_cloud_xyz32(header,point_clond[:,:3]))
#发布相机视野以及车子模型marker函数
def publish_ego_car(ego_car_pub):
#publish left and right 45 degree FOV lines and ego car model mesh
marker_array=MarkerArray()#解决marker发布不同步问题
marker=Marker()
marker.header.frame_id=FRAME_ID
marker.header.stamp=rospy.Time.now()
marker.id=0#每个marker只能有一个id,有重复的id,只会显示一个
marker.action=Marker.ADD#表示添加marker
marker.lifetime=rospy.Duration()#lifetime表示marker在画面中显示的时长;Duration()函数,不给任何参数时,表示一直存在
marker.type=Marker.LINE_STRIP#所发布marker的类型
#设定指示线颜色
marker.color.r=0.0
marker.color.g=1.0
marker.color.b=0.0
marker.color.a=1.0#透明度,1表示完全不透明
marker.scale.x=0.2#大小,这里表示线的粗细
#根据激光点云的坐标系来定义2号相机的视野范围
marker.points=[]
marker.points.append(Point(10,-10,0))#Point,属于ros的资料包里面的定义,所以需要导入
marker.points.append(Point(0,0,0))
marker.points.append(Point(10,10,0))
marker_array.markers.append(marker)#将指示线marker放到MarkerArray中
#发布车子外形函数
mesh_marker=Marker()
mesh_marker.header.frame_id=FRAME_ID
mesh_marker.header.stamp=rospy.Time.now()
mesh_marker.id=-1#id只能设置整数,不能设置带有小数的
mesh_marker.lifetime=rospy.Duration()
mesh_marker.type=Marker.MESH_RESOURCE#这里的MESH_RESOURCE表示导入的是3d模型
mesh_marker.mesh_resource="package://kitti_tutorial/Audi R8/Models/Audi R8.dae"#下载的dae模型存在问题,只是显示部分
#设定模型位置
mesh_marker.pose.position.x=0.0
mesh_marker.pose.position.y=0.0
mesh_marker.pose.position.z=-1.73#这里负数,是因为以激光雷达坐标系而定义的,1.73是根据官方发布的位置定义所取的
#设计车子模型的旋转量
q=tf.transformations.quaternion_from_euler(0,0,np.pi/2)#(np.pi/2,0,np.pi)这里根据下载的车子模型进行调整
mesh_marker.pose.orientation.x=q[0]
mesh_marker.pose.orientation.y=q[1]
mesh_marker.pose.orientation.z=q[2]
mesh_marker.pose.orientation.w=q[3]
#设置车子模型的颜色
mesh_marker.color.r=1.0
mesh_marker.color.g=1.0
mesh_marker.color.b=1.0
mesh_marker.color.a=1.0
#设置车子模型的大小
mesh_marker.scale.x=0.6
mesh_marker.scale.y=0.6
mesh_marker.scale.z=0.6
marker_array.markers.append(mesh_marker)#将车子marker放到MarkerArray中
ego_car_pub.publish(marker_array)
#发布imu资料函数
def publish_imu(imu_pub,imu_data):
imu=Imu()#ros,imu 进行google可以查看文档说明
imu.header.frame_id=FRAME_ID
imu.header.stamp=rospy.Time.now()
#旋转角度、加速度,角速度
q=tf.transformations.quaternion_from_euler(float(imu_data.roll),float(imu_data.pitch),float(imu_data.yaw))#(np.pi/2,0,np.pi)这里根据下载的车子模型进行调整
imu.orientation.x=q[0]#以下四个表示旋转角,将读取的数据转为四元数表示
imu.orientation.y=q[1]
imu.orientation.z=q[2]
imu.orientation.w=q[3]
imu.linear_acceleration.x=imu_data.af#根据雷达坐标系,确定x方向线性加速度
imu.linear_acceleration.y=imu_data.al#根据雷达坐标系,确定y方向线性加速度
imu.linear_acceleration.z=imu_data.au#根据雷达坐标系,确定z方向线性加速度
imu.angular_velocity.x=imu_data.wf#这三个表示不同方向的角速度
imu.angular_velocity.y=imu_data.wl
imu.angular_velocity.z=imu_data.wu
imu_pub.publish(imu)
#发布gps资料函数
def publish_gps(gps_pub,imu_data):
gps=NavSatFix()#ros里面对于gps资料识别包
gps.header.frame_id=FRAME_ID
gps.header.stamp=rospy.Time.now()
gps.latitude=imu_data.lat#纬度
gps.longitude=imu_data.lon#经度
gps.altitude=imu_data.alt#海拔
gps_pub.publish(gps)
#发布侦测盒函数
#def publish_3dbox(box3d_pub,corners_3d_velos):#侦测盒颜色一致写法
def publish_3dbox(box3d_pub,corners_3d_velos,types):#types指定物体种类以表示不同颜色
marker_array=MarkerArray()#把所有marker放在一起发布
for i,corners_3d_velo in enumerate(corners_3d_velos):#对每个顶点建立marker
marker = Marker()
marker.header.frame_id = FRAME_ID
marker.header.stamp =rospy.Time.now()
marker.id =i
marker.action = Marker.ADD
#由于车子一直在运动,0.1秒会更新一次,所以侦测盒更新时间为LIFETIME=0.1秒,防止侦测盒一直存在
marker.lifetime =rospy.Duration(LIFETIME)
marker.type = Marker.LINE_LIST
# marker.color.r = 0.0#这几行表示发布的侦查盒颜色都一样的
# marker.color.g = 1.0
# marker.color.b = 1.0
b, g, r = DETECTION_COLOR_DICT[types[i]]#根据不同类型,侦测盒颜色给不一样
marker.color.r = r/255.0 #由于是python2,所以需要加.0才会做小数点除法
marker.color.g = g/255.0
marker.color.b = b/255.0
marker.color.a = 1.0
marker.scale.x = 0.1
marker.points = []
for l in LINES:#给8个顶点指定连线顺序,上面有定义
p1 = corners_3d_velo[l[0]]
marker.points.append(Point(p1[0],p1[1],p1[2]))
p2 = corners_3d_velo[l[1]]
marker.points.append(Point(p2[0],p2[1],p2[2]))
marker_array.markers.append(marker)
box3d_pub.publish(marker_array)#发布
p14_kitti.py:
#!/usr/bin/env python
# -*- coding:utf8 -*-
from data_utils import *
from publish_utils import *
from kitti_utils import * #kitti_utils.py文件有报错,但是不影响运行
DATA_PATH='/home/ylh/data/kitti/RawData/2011_09_26/2011_09_26_drive_0005_sync'
#3d侦测盒生成函数
#以特殊情况为例,当rot_y=0时,(pos_x,pos_y,pos_z)就是位于侦测盒的下方平面的中心点
#根据资料中的长宽,可以获取下方平面的四角坐标,然后根据高数据,从而获取侦测盒的八个点的坐标
#对于rot_y!=0情况,需要每个点乘以一个旋转矩阵(对相机坐标系中的y轴进行旋转),那么就可以得到
#带有rot_y!=0也就是yaw非0情况,8个顶点坐标(yaw=0情况时)乘以旋转矩阵,可得到新的8个顶点坐标
def compute_3d_box_cam2(h,w,l,x,y,z,yaw):
#return:3xn in can2 coordinate
#rot_y!=0时的旋转矩阵
R = np.array([[np.cos(yaw),0,np.sin(yaw)],[0,1,0],[-np.sin(yaw),0,np.cos(yaw)]])
#8个顶点所对应的xyz坐标(rot_y=0时)
x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2]
y_corners = [0,0,0,0,-h,-h,-h,-h]
z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2]
#做旋转,rot_y=0可视为旋转特例,只不过角度为0而已,然后,让8个顶点坐标与旋转矩阵相乘
corners_3d_cam2 = np.dot(R,np.vstack([x_corners,y_corners,z_corners]))
#由于以下方中心点做旋转的,所以,需要加上该旋转中心点坐标(x,y,z)
corners_3d_cam2 += np.vstack([x,y,z])
return corners_3d_cam2#返回侦测盒8个顶点在相机坐标系中的坐标
if __name__=='__main__':
frame = 0
rospy.init_node('kitti_node',anonymous=True)
cam_pub=rospy.Publisher('kitti_cam',Image,queue_size=10)#建立发布图片topic
pcl_pub=rospy.Publisher('kitti_point_cloud',PointCloud2,queue_size=10)#建立发布点云topic
#ego_pub=rospy.Publisher('kitti_ego_car',Marker,queue_size=10)#建立发布指示线marker的topic
ego_pub=rospy.Publisher('kitti_ego_car',MarkerArray,queue_size=10)#MarkerArray方式发布
#model_pub=rospy.Publisher('kitti_car_model',Marker,queue_size=10)#建立发布车子模型的marker的topic
imu_pub=rospy.Publisher('kitti_imu',Imu,queue_size=10)#建立发布imu资料的topic
gps_pub=rospy.Publisher('kitti_gps',NavSatFix,queue_size=10)#建立发布gps资料的topic,NavSatFix,ros里面固定卫星侦测资料包
box3d_pub=rospy.Publisher('kitti_3d',MarkerArray,queue_size=10)#创建发布侦测盒的topic
bridge=CvBridge()
rate=rospy.Rate(10)
#读取tracking资料
df_tracking=read_tracking('/home/ylh/data/kitti/training/label_02/0000.txt')
#读取坐标转换文件,from_video=True表示会读取路径中三个.txt坐标转换文件
calib = Calibration('/home/ylh/data/kitti/RawData/2011_09_26/',from_video=True)
while not rospy.is_shutdown():
#将tracking资料的绘制框框所需资料筛选并处理
df_tracking_frame = df_tracking[df_tracking.frame==frame]
boxes_2d = np.array(df_tracking_frame[['bbox_left','bbox_top','bbox_right','bbox_bottom']])#获取tracking资料第frame帧图片中的box们对应的四边坐标
types=np.array(df_tracking_frame['type'])#读取tracking资料第frame帧图片中的物体种类类型并保存到tpyes数组中
#读取tracking里面侦测盒参数
boxes_3d = np.array(df_tracking_frame[['height','width','length','pos_x','pos_y','pos_z','rot_y']])
corners_3d_velos = []#存放侦测盒8个顶点数据
for box_3d in boxes_3d:#根据资料生成所有侦测盒
corners_3d_cam2 = compute_3d_box_cam2(*box_3d)#由于该函数有7个参数,所以使用星号自动展开;计算获取侦测盒8个顶点坐标
corners_3d_velo = calib.project_rect_to_velo(corners_3d_cam2.T)#把8个顶点,从相机坐标系装换到雷达坐标系
corners_3d_velos += [corners_3d_velo]#存放所有侦测盒8顶点数据
#读取图片
image=read_camera(os.path.join(DATA_PATH,'image_02/data/%010d.png'%frame))
#发布图片
#publish_camera(cam_pub,bridge,image)
publish_camera(cam_pub,bridge,image,boxes_2d,types)#增加参数boxes,types,为了给图片指定类型绘制框框
#读取点云
point_clond=read_point_cloud(os.path.join(DATA_PATH,'velodyne_points/data/%010d.bin'%frame))
#发布点云
publish_point_cloud(pcl_pub,point_clond)
#发布指示线marker;由于不需要读取资料,所以直接发布即可
#当采用markerarray发布方式,则车子和指示线都放在这个topic
#进行发布即可。故下面的发布车子模型marker可以删除。这样子,可以解决不同marker发布不同步问题
publish_ego_car(ego_pub)
#发布车子模型marker;由于不需要读取资料,所以直接发布即可
#publish_car_model(model_pub)
#读取imu资料,这里也包含了gps资料了
imu_data=read_imu(os.path.join(DATA_PATH,'oxts/data/%010d.txt'%frame))
#发布imu资料
publish_imu(imu_pub,imu_data)
#发布gps资料
publish_gps(gps_pub,imu_data)
#发布侦测盒
#publish_3dbox(box3d_pub,corners_3d_velos)#侦测盒颜色一致写法
publish_3dbox(box3d_pub,corners_3d_velos,types)#侦测盒类型不同而不一样写法
#发布
rospy.loginfo("published")
rate.sleep()
frame+=1
frame%=154
kitti_utils.py:
""" Helper methods for loading and parsing KITTI data.
Author: Charles R. Qi
Date: September 2017
"""
from __future__ import print_function
import numpy as np
import cv2
import os
class Object3d(object):
''' 3d object label '''
def __init__(self, label_file_line):
data = label_file_line.split(' ')
data[1:] = [float(x) for x in data[1:]]
# extract label, truncation, occlusion
self.type = data[0] # 'Car', 'Pedestrian', ...
self.truncation = data[1] # truncated pixel ratio [0..1]
self.occlusion = int(data[2]) # 0=visible, 1=partly occluded, 2=fully occluded, 3=unknown
self.alpha = data[3] # object observation angle [-pi..pi]
# extract 2d bounding box in 0-based coordinates
self.xmin = data[4] # left
self.ymin = data[5] # top
self.xmax = data[6] # right
self.ymax = data[7] # bottom
self.box2d = np.array([self.xmin,self.ymin,self.xmax,self.ymax])
# extract 3d bounding box information
self.h = data[8] # box height
self.w = data[9] # box width
self.l = data[10] # box length (in meters)
self.t = (data[11],data[12],data[13]) # location (x,y,z) in camera coord.
self.ry = data[14] # yaw angle (around Y-axis in camera coordinates) [-pi..pi]
def print_object(self):
print('Type, truncation, occlusion, alpha: %s, %d, %d, %f' % \
(self.type, self.truncation, self.occlusion, self.alpha))
print('2d bbox (x0,y0,x1,y1): %f, %f, %f, %f' % \
(self.xmin, self.ymin, self.xmax, self.ymax))
print('3d bbox h,w,l: %f, %f, %f' % \
(self.h, self.w, self.l))
print('3d bbox location, ry: (%f, %f, %f), %f' % \
(self.t[0],self.t[1],self.t[2],self.ry))
class Calibration(object):
''' Calibration matrices and utils
3d XYZ in
def __init__(self, calib_filepath, from_video=False):
if from_video:
calibs = self.read_calib_from_video(calib_filepath)
else:
calibs = self.read_calib_file(calib_filepath)
# Projection matrix from rect camera coord to image2 coord
self.P = calibs['P2']
self.P = np.reshape(self.P, [3,4])
# Rigid transform from Velodyne coord to reference camera coord
self.V2C = calibs['Tr_velo_to_cam']
self.V2C = np.reshape(self.V2C, [3,4])
self.C2V = inverse_rigid_trans(self.V2C)
# Rotation from reference camera coord to rect camera coord
self.R0 = calibs['R0_rect']
self.R0 = np.reshape(self.R0,[3,3])
# Camera intrinsics and extrinsics
self.c_u = self.P[0,2]
self.c_v = self.P[1,2]
self.f_u = self.P[0,0]
self.f_v = self.P[1,1]
self.b_x = self.P[0,3]/(-self.f_u) # relative
self.b_y = self.P[1,3]/(-self.f_v)
def read_calib_file(self, filepath):
''' Read in a calibration file and parse into a dictionary.
Ref: https://github.com/utiasSTARS/pykitti/blob/master/pykitti/utils.py
'''
data = {}
with open(filepath, 'r') as f:
for line in f.readlines():
line = line.rstrip()
if len(line)==0: continue
key, value = line.split(':', 1)
# The only non-float values in these files are dates, which
# we don't care about anyway
try:
data[key] = np.array([float(x) for x in value.split()])
except ValueError:
pass
return data
def read_calib_from_video(self, calib_root_dir):
''' Read calibration for camera 2 from video calib files.
there are calib_cam_to_cam and calib_velo_to_cam under the calib_root_dir
'''
data = {}
cam2cam = self.read_calib_file(os.path.join(calib_root_dir, 'calib_cam_to_cam.txt'))
velo2cam = self.read_calib_file(os.path.join(calib_root_dir, 'calib_velo_to_cam.txt'))
Tr_velo_to_cam = np.zeros((3,4))
Tr_velo_to_cam[0:3,0:3] = np.reshape(velo2cam['R'], [3,3])
Tr_velo_to_cam[:,3] = velo2cam['T']
data['Tr_velo_to_cam'] = np.reshape(Tr_velo_to_cam, [12])
data['R0_rect'] = cam2cam['R_rect_00']
data['P2'] = cam2cam['P_rect_02']
return data
def cart2hom(self, pts_3d):
''' Input: nx3 points in Cartesian
Oupput: nx4 points in Homogeneous by pending 1
'''
n = pts_3d.shape[0]
pts_3d_hom = np.hstack((pts_3d, np.ones((n,1))))
return pts_3d_hom
# ===========================
# ------- 3d to 3d ----------
# ===========================
def project_velo_to_ref(self, pts_3d_velo):
pts_3d_velo = self.cart2hom(pts_3d_velo) # nx4
return np.dot(pts_3d_velo, np.transpose(self.V2C))
def project_ref_to_velo(self, pts_3d_ref):
pts_3d_ref = self.cart2hom(pts_3d_ref) # nx4
return np.dot(pts_3d_ref, np.transpose(self.C2V))
def project_rect_to_ref(self, pts_3d_rect):
''' Input and Output are nx3 points '''
return np.transpose(np.dot(np.linalg.inv(self.R0), np.transpose(pts_3d_rect)))
def project_ref_to_rect(self, pts_3d_ref):
''' Input and Output are nx3 points '''
return np.transpose(np.dot(self.R0, np.transpose(pts_3d_ref)))
def project_rect_to_velo(self, pts_3d_rect):
''' Input: nx3 points in rect camera coord.
Output: nx3 points in velodyne coord.
'''
pts_3d_ref = self.project_rect_to_ref(pts_3d_rect)
return self.project_ref_to_velo(pts_3d_ref)
def project_velo_to_rect(self, pts_3d_velo):
pts_3d_ref = self.project_velo_to_ref(pts_3d_velo)
return self.project_ref_to_rect(pts_3d_ref)
# ===========================
# ------- 3d to 2d ----------
# ===========================
def project_rect_to_image(self, pts_3d_rect):
''' Input: nx3 points in rect camera coord.
Output: nx2 points in image2 coord.
'''
pts_3d_rect = self.cart2hom(pts_3d_rect)
pts_2d = np.dot(pts_3d_rect, np.transpose(self.P)) # nx3
pts_2d[:,0] /= pts_2d[:,2]
pts_2d[:,1] /= pts_2d[:,2]
return pts_2d[:,0:2]
def project_velo_to_image(self, pts_3d_velo):
''' Input: nx3 points in velodyne coord.
Output: nx2 points in image2 coord.
'''
pts_3d_rect = self.project_velo_to_rect(pts_3d_velo)
return self.project_rect_to_image(pts_3d_rect)
# ===========================
# ------- 2d to 3d ----------
# ===========================
def project_image_to_rect(self, uv_depth):
''' Input: nx3 first two channels are uv, 3rd channel
is depth in rect camera coord.
Output: nx3 points in rect camera coord.
'''
n = uv_depth.shape[0]
x = ((uv_depth[:,0]-self.c_u)*uv_depth[:,2])/self.f_u + self.b_x
y = ((uv_depth[:,1]-self.c_v)*uv_depth[:,2])/self.f_v + self.b_y
pts_3d_rect = np.zeros((n,3))
pts_3d_rect[:,0] = x
pts_3d_rect[:,1] = y
pts_3d_rect[:,2] = uv_depth[:,2]
return pts_3d_rect
def project_image_to_velo(self, uv_depth):
pts_3d_rect = self.project_image_to_rect(uv_depth)
return self.project_rect_to_velo(pts_3d_rect)
def rotx(t):
''' 3D Rotation about the x-axis. '''
c = np.cos(t)
s = np.sin(t)
return np.array([[1, 0, 0],
[0, c, -s],
[0, s, c]])
def roty(t):
''' Rotation about the y-axis. '''
c = np.cos(t)
s = np.sin(t)
return np.array([[c, 0, s],
[0, 1, 0],
[-s, 0, c]])
def rotz(t):
''' Rotation about the z-axis. '''
c = np.cos(t)
s = np.sin(t)
return np.array([[c, -s, 0],
[s, c, 0],
[0, 0, 1]])
def transform_from_rot_trans(R, t):
''' Transforation matrix from rotation matrix and translation vector. '''
R = R.reshape(3, 3)
t = t.reshape(3, 1)
return np.vstack((np.hstack([R, t]), [0, 0, 0, 1]))
def inverse_rigid_trans(Tr):
''' Inverse a rigid body transform matrix (3x4 as [R|t])
[R'|-R't; 0|1]
'''
inv_Tr = np.zeros_like(Tr) # 3x4
inv_Tr[0:3,0:3] = np.transpose(Tr[0:3,0:3])
inv_Tr[0:3,3] = np.dot(-np.transpose(Tr[0:3,0:3]), Tr[0:3,3])
return inv_Tr
def read_label(label_filename):
lines = [line.rstrip() for line in open(label_filename)]
objects = [Object3d(line) for line in lines]
return objects
def load_image(img_filename):
return cv2.imread(img_filename)
def load_velo_scan(velo_filename):
scan = np.fromfile(velo_filename, dtype=np.float32)
scan = scan.reshape((-1, 4))
return scan
def project_to_image(pts_3d, P):
''' Project 3d points to image plane.
Usage: pts_2d = projectToImage(pts_3d, P)
input: pts_3d: nx3 matrix
P: 3x4 projection matrix
output: pts_2d: nx2 matrix
P(3x4) dot pts_3d_extended(4xn) = projected_pts_2d(3xn)
=> normalize projected_pts_2d(2xn)
<=> pts_3d_extended(nx4) dot P'(4x3) = projected_pts_2d(nx3)
=> normalize projected_pts_2d(nx2)
'''
n = pts_3d.shape[0]
pts_3d_extend = np.hstack((pts_3d, np.ones((n,1))))
print(('pts_3d_extend shape: ', pts_3d_extend.shape))
pts_2d = np.dot(pts_3d_extend, np.transpose(P)) # nx3
pts_2d[:,0] /= pts_2d[:,2]
pts_2d[:,1] /= pts_2d[:,2]
return pts_2d[:,0:2]
def compute_box_3d(obj, P):
''' Takes an object and a projection matrix (P) and projects the 3d
bounding box into the image plane.
Returns:
corners_2d: (8,2) array in left image coord.
corners_3d: (8,3) array in in rect camera coord.
'''
# compute rotational matrix around yaw axis
R = roty(obj.ry)
# 3d bounding box dimensions
l = obj.l;
w = obj.w;
h = obj.h;
# 3d bounding box corners
x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2];
y_corners = [0,0,0,0,-h,-h,-h,-h];
z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2];
# rotate and translate 3d bounding box
corners_3d = np.dot(R, np.vstack([x_corners,y_corners,z_corners]))
#print corners_3d.shape
corners_3d[0,:] = corners_3d[0,:] + obj.t[0];
corners_3d[1,:] = corners_3d[1,:] + obj.t[1];
corners_3d[2,:] = corners_3d[2,:] + obj.t[2];
#print 'cornsers_3d: ', corners_3d
# only draw 3d bounding box for objs in front of the camera
if np.any(corners_3d[2,:]<0.1):
corners_2d = None
return corners_2d, np.transpose(corners_3d)
# project the 3d bounding box into the image plane
corners_2d = project_to_image(np.transpose(corners_3d), P);
#print 'corners_2d: ', corners_2d
return corners_2d, np.transpose(corners_3d)
def compute_orientation_3d(obj, P):
''' Takes an object and a projection matrix (P) and projects the 3d
object orientation vector into the image plane.
Returns:
orientation_2d: (2,2) array in left image coord.
orientation_3d: (2,3) array in in rect camera coord.
'''
# compute rotational matrix around yaw axis
R = roty(obj.ry)
# orientation in object coordinate system
orientation_3d = np.array([[0.0, obj.l],[0,0],[0,0]])
# rotate and translate in camera coordinate system, project in image
orientation_3d = np.dot(R, orientation_3d)
orientation_3d[0,:] = orientation_3d[0,:] + obj.t[0]
orientation_3d[1,:] = orientation_3d[1,:] + obj.t[1]
orientation_3d[2,:] = orientation_3d[2,:] + obj.t[2]
# vector behind image plane?
if np.any(orientation_3d[2,:]<0.1):
orientation_2d = None
return orientation_2d, np.transpose(orientation_3d)
# project orientation into the image plane
orientation_2d = project_to_image(np.transpose(orientation_3d), P);
return orientation_2d, np.transpose(orientation_3d)
def draw_projected_box3d(image, qs, color=(255,255,255), thickness=2):
''' Draw 3d bounding box in image
qs: (8,3) array of vertices for the 3d box in following order:
1 -------- 0
/| /|
2 -------- 3 .
| | | |
. 5 -------- 4
|/ |/
6 -------- 7
'''
qs = qs.astype(np.int32)
for k in range(0,4):
# Ref: http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
i,j=k,(k+1)%4
# use LINE_AA for opencv3
cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness, cv2.CV_AA)
i,j=k+4,(k+1)%4 + 4
cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness, cv2.CV_AA)
i,j=k,k+4
cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness, cv2.CV_AA)
return image
kitti_utils.py是直接复制github现有的资源,负责坐标系转换计算,可参考0、小节对应的链接介绍
运行后,添加topic后,在rviz可以看到选定的各种物体根据不同类型显示不同颜色的3d侦测盒:
tracking资料属于2号相机的,所以绘制3d侦测盒,里面显示的也是2号相机视野范围的物体3d侦测盒。
1)个人认为难点在于3d侦测盒的8点坐标获取
先考虑特殊情况没有旋转情况,也就是rot_y=0时,3d侦测盒的底部中心点坐标,然后根据读取的tracking计算出点坐标;对于非特殊情况,也就是rot_y!=0时,需要通过旋转矩阵来计算各个点坐标。当然,这里说得不清楚,下次有时间使用visio绘图来讲解可能比较清楚,或者可以直接看看链接AI葵老师视频。
2)物体3d侦测盒需要从相机坐标系转换到激光雷达坐标系进行显示
至此,kitti数据集的3d侦测盒绘制完成~
#####################
学习课程来源up主,AI葵:
https://www.youtube.com/watch?v=TBdcwwr5Wyk
致谢AI葵老师
不积硅步,无以至千里
好记性不如烂笔头
感觉有点收获的话,麻烦大大们点赞收藏哈