Python实现时间序列分析马尔可夫切换自回归模型(MarkovAutoregression算法)项目实战
胖哥真不错
机器学习pythonpython机器学习时间序列分析马尔可夫切换自回归模型项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景时间序列分析中的马尔可夫切换自回归模型(MarkovSwitchingAutoregressionModel,简称MSAR或MarkovAutoregression算法)是一种混合了自回归模型(AutoregressiveModel,AR)和马尔可夫链(MarkovC
Python实现时间序列分析马尔可夫切换动态回归模型(MarkovRegression算法)项目实战
胖哥真不错
机器学习pythonpython机器学习时间序列分析马尔可夫切换动态回归模型项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景时间序列分析中的马尔可夫切换动态回归模型(MarkovSwitchingDynamicRegressionModel,MSDRM或简称为MarkovRegression算法)是一种用于处理具有非平稳性和隐藏状态依赖性的时序数据的方法。在该模型中,数据生成过程被认为是在
Python实现时间序列分析季节性自回归综合移动平均外生回归模型(SARIMAX算法)项目实战
胖哥真不错
机器学习pythonpython时间序列分析季节性自回归综合移动平均外生回归模型SARIMAX项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景时间序列分析中的季节性自回归综合移动平均外生回归模型(SeasonalAutoregressiveIntegratedMovingAveragewitheXogenousregressors,SARIMAX)是一种统计建模技术,用于分析和预测具有季节性、趋势以及可能受
Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战
胖哥真不错
机器学习pythonpython机器学习时间序列分析AR定阶自回归模型ar_select_order项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景时间序列分析中,AR定阶自回归模型(ARorderselection)是指确定自回归模型(AutoRegressiveModel,AR模型)的阶数p的过程。在AR(p)模型中,当前的时间序列值被表示为过去p个时期的线性组合加上一个误差项。ar_select_order
python机器学习实战|机器学习入门笔记3-Pandas基础知识
小赵同学871
机器学习实战入门笔记python机器学习pandas
文章目录1.Pandas介绍2.案例知识点2.1创建DataFrame2.2创建日期3.DataFrame介绍3.1DataFrame属性3.2DataFrame设置索引3.3基本数据操作3.4DataFrame运算1.Pandas介绍开源的数据挖掘库,用于数据探索,封装了matplotlib,numpy2.案例知识点2.1创建DataFramepd.DataFrame(ndarray,index
Python实现离散选择概率模型(Probit算法)项目实战
胖哥真不错
机器学习pythonpython离散选择概率模型Probit算法机器学习项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景Probit模型是经过Logit模型的形式经过变形后得到的,Probit模型假设与标准正态分布的概率分布函数相似。本项目通过Probit算法来构建概率模型。2.数据获取本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:编号变量名称描述1x12x23x34
机器学习实战 K-近邻算法
今昔何夕丶
K-近邻算法优点:精度高、对异常值不敏感、无数据输入假定缺点:计算复杂高、空间复杂度高适用数据范围:数值型和标称型一般流程收集数据:可以使用任何方法准备数据:距离计算所需要的数值,最好是结构化的数据结构分析数据:可以使用任何方法训练算法:此步骤不适用于K-近邻算法测试算法:计算错误率使用算法:首先需要输入样本数据和结构化的输出结果,然后运行K-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出
Python实现稳健线性回归模型(rlm算法)项目实战
胖哥真不错
机器学习pythonpython机器学习稳健线性回归模型rlm算法项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景稳健回归可以用在任何使用最小二乘回归的情况下。在拟合最小二乘回归时,我们可能会发现一些异常值或高杠杆数据点。已经确定这些数据点不是数据输入错误,也不是来自另一个群落。所以我们没有令人信服的理由将它们排除在分析之外。稳健回归可能是一种好的策略,它是在将这些点完全从分析中
机器学习实战学习记录(github)
monkeyhlj
学习
机器学习实战学习记录(github)可见我的github:https://github.com/monkeyhlj/machine_learning_bymyself刚刚建好,后面的学习记录会一直在这个仓库里面更新。推荐参考资料:https://www.zhihu.com/column/c_1242508311053963264
【机器学习实战】决策树
吵吵人
算法思路在构造决策树时,第一个需要解决的问题就是,如何确定出哪个特征在划分数据分类是起决定性作用,或者说使用哪个特征分类能实现最好的分类效果。这样,为了找到决定性的特征,划分得到最好的结果,我们就需要评估每个特征。当找到最优特征后,依此特征,数据集就被划分为几个数据子集,这些数据自己会分布在该决策点的所有分支中。此时,如果某个分支下的数据属于同一类型,则该分支下的数据分类已经完成,无需进行下一步的
Python实现基于多元线性回归模型进行统计学相互作用和方差分析(anova算法)项目实战
胖哥真不错
机器学习python线性回归人工智能机器学习python相互作用方差分析anova算法
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景多元线性回归模型(MultipleLinearRegressionModel)是一种统计学方法,用于研究一个或多个自变量(predictors)与因变量(dependentvariable)之间的关系。在模型中,因变量的值通过一个线性函数来预测,该函数包含了自变量的系
Python实现基于广义线性回归模型进行Meta分析(meta_analysis算法)项目实战
胖哥真不错
机器学习python线性回归python机器学习广义线性回归模型Meta分析meta_analysis算法项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景对于广义线性回归模型在Meta分析中的应用概念,可能是将其用于处理非正态分布或非线性关系的数据,例如:1.当原始研究的结果数据不是连续型且服从正态分布,而是二项分布(如成功率)、泊松分布(如发病率)或其他分布时,可以通过GLM设定适当的链接函数和分布族来适应。2.在进
Python实现GEE嵌套协方差结构仿真模型(GEE算法)项目实战
胖哥真不错
机器学习pythonpython机器学习GEE嵌套协方差结构仿真模型GEE算法项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景广义估计方程(GeneralizedEstimatingEquations,GEE)是一种用于分析具有重复测量或者集群数据的统计方法。在社会学、医学、生物学等多个领域,研究对象的数据往往存在嵌套或群聚结构,即个体的数据不是独立的,而是隶属于某个群体或层级结构中。GEE
Python实现M-Estimators稳健线性回归模型(RLM算法)项目实战
胖哥真不错
机器学习pythonpython机器学习M-Estimators稳健线性回归模型RLM算法
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景M-Estimators是稳健统计估计中的一个重要概念,它们在处理含有异常值、离群点或者影响点的数据时特别有用。在稳健线性回归(RobustLinearRegression,RLM)模型中,M-Estimators用于替代普通最小二乘法(OLS),以减少这些极端观测值
机器学习——python训练RNN模型实战(傻瓜式教学,小学生都可以学会)代码开源
苏苏不是叔
机器学习pythonrnn
机器学习实战目录第一章python训练线性模型实战第二章python训练决策树模型实战第三章python训练神经网络模型实战第四章python训练支持向量机模型实战第五章python训练贝叶斯分类器模型实战第六章python训练集成学习模型实战第七章python训练聚类模型实战第八章python训练KNN模型实战第九章python训练CNN模型实战第十章python训练RNN模型实战......(
机器学习——python训练决策树模型实战(傻瓜式教学,小学生都可以学会)
苏苏不是叔
机器学习python决策树
机器学习——python训练决策树模型实战目录机器学习——python训练决策树模型实战机器学习实战目录训练一个决策树模型需要经过以下步骤:1.下载数据集2.数据预处理3.加载数据集4.准备训练数据5.创建模型6.训练模型7.测试模型参考资料机器学习实战目录第一章python训练线性模型实战第二章python训练决策树模型实战第三章python训练神经网络模型实战第四章python训练支持向量机模
apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
[sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
[Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号