《量子混沌运动:量子计算中的干扰及其影响》 – 叶宾 仇量著
附录:开放环境中QKH模型的量子仿真程序
vs2017运行正常.
qkh.cpp
#include
#include
#include
#include
#include
//#include
using namespace std;
typedef complex complexe;
//#define M_PI _Pi
#define M_PI 3.14159265
double K, L, hbar; // Harper 模型参数
int nq, nr; // nq:量子寄存器中量子比特数目(含1个辅助量子比特),nr=nq-1
long int N, Nr; // Hilbert 空间维数
int steps; // 短时间片算法中分解的门序列个数
int p_pair, q_pair;
long int p, p_imp, q, q_imp;
int res1, res2;
long int portes;
double gam; // 退相干速率
int dissipation_err; // 标记耗散干扰是否存在
int Ntray=150; // 量子轨迹的数目
int channel = 4; // 选择耗散干扰的噪声模型:幅值阻尼信道或相位阻尼信道等
int Iter = 10; // 退相干步数
// 计算整数"num"的二进制表示中"1"的数目之和
int binsum(int num) {
int sum, temp;
sum = 0;
while (num != 0) {
temp = num % 2;
if (temp == 1) {
sum++;
}
num = num / 2;
}
return sum;
}
complexe ampdamp2a(complexe *VE, int k) {
int j2, b, i, j;
complexe VEtemp, aux1;
VEtemp = 0.0;
i = 0;
for (j2 = 0; j2 < N / 2; j2++) {
j = j2 / (i << k) * (1 << (k + 1)) + (1 << k) + j2 - j2 / (1 << k) * (1 <
void ampdamp2b(complexe *VE, complexe *VE3, int k) {
int j2, b, i, j;
for (j2 = 0; j2 < N; j2++) {
VE3[j2] = 0.0;
}
for (j2 = 0; j2 < N / 2; j2++) {
j = j2 / (1 << k) * (1 << (k + 1)) + (1 << k) + j2 - j2 / (1 << k) * (1 << k);
i = j - (1 << k);
if (i == 0) {
VE3[i] = VE[j];
}
else if (channel == 0) {
b = binsum(j);
VE3[i] = complexe(sqrt(1. / float(b)), 0.) * VE[j];
}
else {
VE3[i] = VE[j];
}
}
}
// 去极化信道模型,计算 L_mu |psi>
void depolarizaion2b(complexe *VE, complexe *VE3, int k, int j) {
int i, i2, j2;
complexe aux1;
// 比特翻转类型
if (j == 0) {
for (i = 0; i < N / 2; i++) {
i2 = (i / (1 << k)) * (1 << (k + 1)) + i - (i / (1 << k)) * (1 < dpm) && (j < channelNr)) {
j = j + 1;
dpm = dpm + dpv[j];
}
j = j - 1;
if (channel <= 1) {
ampdamp2b(VE, VE3, j);
}
else if (channel == 5) {
depolarizaion2b(VE, VE3, (j - (j % 3)) / 3, (j % 3));
}
else {
depolarizaion2b(VE, VE3, j, channel - 2);
}
normalisation = 0.0;
for (i = 0; i < N; i++) {
normalisation += norm(VE3[i]);
}
for (i = 0; i < N; i++) {
VE[i] = VE3[i] / sqrt(normalisation);
}
}
else { // 在 H_eff 下演化
for (i = 0; i < N; i++) {
VE3[i] = 0.0;
}
if (channel <= 1) {
VE3[0] = VE[0];
init = 1;
}
else {
init = 0;
}
for (i = init; i < N; i++) {
if (channel <= 1) {
if (channel == 1) {
bsum = binsum(i);
VE3[i] = (1.0 - (gam / 2.0 / (float)Iter * (float)bsum)) * VE[i];
}
else {
VE3[i] = (1.0 - (gam / 2.0 / (float)Iter)) * VE[i];
}
}
else {
VE3[i] = (1.0 - (gam / 2.0 / (float)Iter * (float)channelNr)) * VE[i];
}
}
normalisation = 0.0;
for (i = 0; i < N; i++) {
normalisation += norm(VE3[i]);
}
for (i = 0; i < N; i++) {
VE[i] = VE3[i] / sqrt(normalisation);
}
}
}
if (VE3 != nullptr) {
free(VE3);
VE3 = nullptr;
}
if (dpv != nullptr) {
free(dpv);
dpv = nullptr;
}
}
// 对第j个量子比特进行 Hadamard 量子门变换
void Porte_Ai(complexe *n, int j) {
long int i, masque, complement;
complexe temp0, temp1;
complexe a11, a12, a21, a22;
a11 = 1 / sqrt(2.0);
a12 = a11;
a21 = a11;
a22 = -a11;
masque = (long int)1 << j;
for (i = 0; i < N; i++) {
if (!(i & masque)) {
complement = i + masque;
temp0 = n[i];
temp1 = n[complement];
n[i] = a11 * temp0 + a12 * temp1;
n[complement] = a21 * temp0 + a22 * temp1;
}
}
if (dissipation_err == 1) {
distep(n); // 处理耗散干扰
}
portes++;
}
// 量子傅里叶变换中的受控相位门
void Porte_Bjk(complexe *n, int j, int k, int signe) {
long int i, masquej, masquek;
complexe phase;
masquej = (long int)1 << j;
masquek = (long int)1 << k;
phase = polar(1.0, signe * M_PI / ((long int)1 << (k - j)));
for (i = 0; i < N; i++) {
if ((i & masquej) && (i & masquek)) {
n[i] *= phase;
}
}
if (dissipation_err == 1) {
distep(n);
}
portes++;
}
// 相移角为 theta 的受控相位门
void Control_Phase(complexe *n, int j, int k, double theta) {
long int i, masquej, masquek;
complexe phase;
masquej = (long int)1 << j;
masquek = (long int)1 << k;
phase = polar(1.0, theta);
for (i = 0; i < N; i++) {
if ((i & masquej) && (i & masquek)) {
n[i] *= phase;
}
}
if (dissipation_err == 1) {
distep(n);
}
portes++;
}
// 交换量子比特 j 和 k
void Porte_Echange(complexe *n, int j, int k) {
long int i, masquej, masquek, complement;
complexe temp;
masquej = (long int) 1 << j;
masquek = (long int) 1 << k;
for (i = 0; i < N; i++) {
if ((!(i & masquej)) && (i & masquek)) {
complement = i - masquek + masquej;
temp = n[i];
n[i] = n[complement];
n[complement] = temp;
}
}
}
// 量子傅里叶变换, signe 取 -1 表示量子傅里叶逆变换
void QFT(complexe *n, int signe) {
int x, m;
for (x = nr - 1; x >= 0; x--) {
for (m = nr - 1; m > x; m--) {
Porte_Bjk(n, x, m, signe);
}
Porte_Ai(n, x);
}
for (x = 0; x < (nr / 2); x++) {
Porte_Echange(n, x, nr - x - 1);
}
}
// 短时间片逼近算法中的相位门旋转门
void Rotation_z(complexe *n, int j, double coef) {
long int i, masquej;
complexe phase;
masquej = (long int) 1 << j;
phase = polar(1.0, coef / 2.0);
for (i = 0; i < N; i++) {
if (i & masquej) {
n[i] /= phase;
}
else {
n[i] *= phase;
}
}
if (dissipation_err == 1) {
distep(n);
}
portes++;
}
// 短时间片逼近算法中的受控U门
void Control_U(complexe *n, int j, int debut, long int pp) {
int k;
for (k = 0; k <= debut; k++) {
Control_Phase(n, j, debut - k, pp * M_PI / pow(2.0, (double)k));
}
}
// 短时间片逼近算法实现的周期驱动算法
void Kick(complexe *n, double coef, long int pp, int a) {
double alpha;
int i;
int control_qubit, debut;
alpha = -coef /steps;
control_qubit = nr;
debut = nr - 1 - a;
Porte_Ai(n, control_qubit);
Control_U(n, control_qubit, debut, -pp);
Porte_Ai(n, control_qubit);
for (i = 0; i < (steps - 1); i++) {
Rotation_z(n, control_qubit, alpha / 2.0);
Porte_Ai(n, control_qubit);
Control_U(n, control_qubit, debut, 2 * pp);
Porte_Ai(n, control_qubit);
Rotation_z(n, control_qubit, alpha);
Porte_Ai(n, control_qubit);
Control_U(n, control_qubit, debut, -2 * pp);
Porte_Ai(n, control_qubit);
Rotation_z(n, control_qubit, alpha / 2.0);
}
Porte_Ai(n, control_qubit);
Control_U(n, control_qubit, debut, pp);
Porte_Ai(n, control_qubit);
}
// 周期驱动的 Harper 模型演化
void Evolution(complexe *n) {
QFT(n, 1); // 量子傅里叶变换
Kick(n, K / hbar, q_imp, q_pair); // 算符 U_theta 下演化
QFT(n, -1); // 量子傅里叶逆变换
Kick(n, L / hbar, p_imp, p_pair); // 算符 U_p 下演化
}
// 将量子态 nh 置为中心在 (p0, q0) 的高斯波包
void gauss_add(complexe *nh, double p0, double q0, double sigma2) {
int p;
double angle, fak, norm, xx, NN, N2;
complexe val;
norm = 1.0 / sqrt(sqrt(2.0 * M_PI * sigma2));
NN = (double) Nr;
N2 = NN / 2.0;
for (p = 0; p < Nr; p++) {
xx = (double) p - p0;
if (xx > N2) {
xx -= NN;
}
if (xx < -N2) {
xx += NN;
}
xx = xx * xx / 4.0 / sigma2;
fak = exp (-xx) * norm;
angle = -q0 * (double)p;
val = polar(fak, angle);
nh[p] = nh[p] + val;
}
}
// 计算保真度
double fidelity(complexe *n_clean, complexe *n) {
complexe sum;
int i;
sum = 0.0;
for (i = 0; i < Nr; i++) {
sum += conj(n_clean[i]) * n[i];
}
return pow(abs(sum), 2);
}
int main(int argc, char** argv) {
complexe *n, *nh, *n_clean;
long int i, j, iterations;
int o;
double itoq, itop;
double normalisation;
double *fid; // 保真度
// 输入5个参数: Harper模型中参数K和L,退相干速率,仿真模型中实际量子比特数目,以及Harper模型迭代次数
if (argc < 6) {
puts("syntax: K L dissipation_rate nr iterations");
exit(1);
}
if (sscanf(argv[1], "%lf", &K) == 0) {
puts("syntax: K L dissipation_rate nr iterations");
exit(1);
}
if (sscanf(argv[2], "%lf", &L) == 0) {
puts("syntax: K L dissipation_rate nr iterations");
exit(1);
}
if (sscanf(argv[3], "%lf", &gam) == 0) {
puts("syntax: K L dissipation_rate nr iterations");
exit(1);
}
if (sscanf(argv[4], "%d", &nr) == 0) {
puts("syntax: K L dissipation_rate nr iterations");
exit(1);
}
if (sscanf(argv[5], "%ld", &iterations) == 0) {
puts("syntax: K L dissipation_rate nr iterations");
exit(1);
}
//srandom((unsigned int)time(NULL));
srand((unsigned int)time(NULL));
Nr = 1 << nr;
nq = nr + 1;
N = 1 << nq;
q = 1; // 相空间中位置坐标上相格的数目
p = 1; // 相空间中动量坐标上相格的数目
hbar = 2.0 * M_PI / (6.0 + (sqrt(5.0) + 1.0) / 2.0);
//hbar = 2.0 * M_PI * p * q / ((double)Nr);
// 每个周期驱动算符中短时间片的数目
steps = 100;
itoq = 2.0 * M_PI * q / ((double)Nr);
itop = 2.0 * M_PI * p / ((double)Nr);
p_pair = 0;
p_imp = p;
while (!(p_imp & 1)) {
p_imp >>= 1;
p_pair++;
}
q_pair = 0;
q_imp = q;
while (!(q_imp & 1)) {
q_imp >>= 1;
q_pair++;
}
// 受控量子态内存分配
n = (complexe*)malloc(N*sizeof(complexe));
if (n == nullptr) {
fprintf(stderr, "Memory allocation of n failed.\n");
exit(1);
}
// 自由演化的量子态内存分配
n_clean = (complexe*)malloc(N*sizeof(complexe));
if (n_clean == nullptr) {
fprintf(stderr, "Memory allocation of n_clean failed.\n");
exit(1);
}
nh = (complexe*)malloc(Nr*sizeof(complexe));
if (nh == nullptr) {
fprintf(stderr, "Memory allocation of nh failed.\n");
exit(1);
}
fid = (double*)malloc(iterations*sizeof(double));
if (fid == nullptr) {
fprintf(stderr, "Memory allocations of fid failed.\n");
exit(1);
}
for (int i = 0; i < iterations; i++) {
fid[i] = 0.0;
}
// 量子态初始化为一高斯波包
gauss_add(nh, Nr/2, Nr/2, sqrt(hbar/2.0));
// 量子轨迹循环
for (o = 1; o <= Ntray; o++) {
for (i = 0; i < Nr; i++) {
n[i] = nh[i];
}
for (i = Nr; i < N; i++) {
n[i] = 0.0;
}
for (i = 0; i < N; i++) {
n_clean[i] = n[i];
}
// Harper模型的演化, 共iterations次
for (j = 0; j < iterations; j++) {
fid[j] = fid[j] + fidelity(n_clean, n);
// 受退相干影响的量子态演化
dissipation_err = 1;
Evolution(n);
normalisation = 0.0; // 归一化
for (i = 0; i < Nr; i++) {
normalisation += norm(n[i]);
}
for (i = 0; i < Nr; i++) {
n[i] = n[i] / sqrt(normalisation);
}
// 无退相干影响的量子态演化
dissipation_err = 0;
Evolution(n_clean);
normalisation = 0.0;
for (i = 0; i < Nr; i++) {
normalisation += norm(n_clean[i]);
}
for (i = 0; i < Nr; i++) {
n_clean[i] = n_clean[i] / sqrt(normalisation);
}
}
}
for (i = 0; i < iterations; i++) {
fid[i] = fid[i] / (double)Ntray;
printf("%f\n", fid[i]);
}
if (n != nullptr) {
free(n);
n = nullptr;
}
if (n_clean != nullptr) {
free(n_clean);
n_clean = nullptr;
}
if (nh != nullptr) {
free(nh);
nh = nullptr;
}
if (fid != nullptr) {
free(fid);
fid = nullptr;
}
return 0;
}
运行测试结果:
qkh.exe 2 3 0.00001 8 10
407070664077128925905746591304527684289817794357391677350186349610932926098386204699747349466868462346917135026795245006280426456235975363663123728786504798731450690373716158292983879068848854677349490274511261158861483489416101103588216295805018387470820629419971754065920.000000
0.586667
0.079837
0.061836
0.056589
0.021332
0.015638
0.004132
0.001694
0.001328
源码地址:
https://github.com/5455945/quantum_lerning/blob/master/qkh/src/qkh.cpp