- 37、深度学习-自学之路-自己搭建深度学习框架-2、自动梯度计算
小宇爱
深度学习-自学之路深度学习人工智能自然语言处理
importnumpyasnpclassTensor(object):'''importnumpyasnp:导入numpy库,用于处理数组相关操作。classTensor(object):定义了一个名为Tensor的类,继承自object。__init__方法是类的构造函数,用于初始化Tensor对象:self.data=np.array(data):将传入的data转换为numpy数组并存储在s
- 梯度累加(结合DDP)梯度检查点
糖葫芦君
LLM算法人工智能大模型深度学习
梯度累加目的梯度累积是一种训练神经网络的技术,主要用于在内存有限的情况下处理较大的批量大小(batchsize)。通常,较大的批量可以提高训练的稳定性和效率,但受限于GPU或TPU的内存,无法一次性加载大批量数据。梯度累积通过多次前向传播和反向传播累积梯度,然后一次性更新模型参数,从而模拟大批量训练的效果。总结:显存限制:GPU/TPU显存有限,无法一次性加载大批量数据。训练稳定性:大批量训练通常
- 神经网络八股(3)
SylviaW08
神经网络人工智能深度学习
1.什么是梯度消失和梯度爆炸梯度消失是指梯度在反向传播的过程中逐渐变小,最终趋近于零,这会导致靠前层的神经网络层权重参数更新缓慢,甚至不更新,学习不到有用的特征。梯度爆炸是指梯度在方向传播过程中逐渐变大,权重参数更新变化较大,导致损失函数的上下跳动,导致训练不稳定可以使用一些合理的损失函数如relu,leakRelu,归一化处理,batchnorm,确保神经元的输出值在合理的范围内2.为什么需要特
- ACM算法与竞赛基地:蓝桥备战 --- 二分篇
NONE-C
蓝桥杯算法数据结构
ACM基地:蓝桥备战—二分篇什么是二分?二分是一种搜索策略,类似于高速中学到的梯度下降法,当我们落在某一点是沿着该点斜率,我们可以像最优处移动,二分也是样的策略,但其更加严格,现代算法,如模拟退火,蚁群算法,BP算法针对的都是存在多种最优解,解决的问题也更加宽泛,而作为传统算法的二分,有着更加严格的限制,想要理解二分,必须要对该限制有深刻理解。接下来我们将展开对二分的学习二分查找+二分答案key1
- 大模型学习完整路径(一站式汇总),从零基础到精通!新手友好级指南
Python程序员罗宾
学习语言模型知识图谱人工智能数据库java
如果读者朋友不想深入学习大模型,则了解提示词的使用原则也可以了。要是既不想深入学习,又要做大模型相关的项目,则对于工程同学来说,学习RAG也能把大模型玩转起来。前排提示,文末有大模型AGI-CSDN独家资料包哦!先来一张整体结构图,越是下面部分,越是基础:可以按以下步骤学习:1.理解基础概念需要了解深度学习的基本原理和常见术语,如神经网络、梯度下降、反向传播、监督学习、无监督学习、分类、回归、聚类
- 支持向量机SVM原理详解
handsomeboysk
支持向量机机器学习人工智能
SVM原理详解1、超平面2、SVM原理1.问题定义2.分类决策得到约束条件3.最大化间隔4.优化目标3、凸优化问题1.原始优化问题优化目标约束条件2.拉格朗日乘子法3.拉格朗日函数分析4.求解对www和bbb的极值5.构造对偶问题对偶问题的约束条件:6、通过支持向量求解bbb支持向量的条件7.对偶问题的解法4、非线性如何划分1.非线性数据问题2.核技巧的核心思想3.常见的核函数1.线性核(Line
- 算法随笔_58: 队列中可以看到的人数
程序趣谈
算法python数据结构
上一篇:算法随笔_57:游戏中弱角色的数量-CSDN博客=====题目描述如下:有n个人排成一个队列,从左到右编号为0到n-1。给你以一个整数数组heights,每个整数互不相同,heights[i]表示第i个人的高度。一个人能看到他右边另一个人的条件是这两人之间的所有人都比他们两人矮。更正式的,第i个人能看到第j个人的条件是imax(heights[i+1],heights[i+2],...,h
- MSE损失函数
亲持红叶
numpy线性代数机器学习
MSE损失函数均方误差损失函数表达式KaTeXparseerror:Unexpectedcharacter:'?'atposition39:…imits_{k=1}^K(?̲?_−_)^2…上式中的12\frac{1}{2}21项用于简化计算,也可以利用1k\frac{1}{k}k1进行平均,这些缩放运算均不会改变梯度方向。偏导数$$\begin{aligned}\frac{\partialL}{
- XGBoost vs LightGBM vs CatBoost:三大梯度提升框架深度解析
机器学习司猫白
机器学习理论机器学习xgboostlightgbmcatboost参数调优人工智能
梯度提升树(GradientBoostingDecisionTrees,GBDT)作为机器学习领域的核心算法,在结构化数据建模中始终占据统治地位。本文将深入解析三大主流实现框架:XGBoost、LightGBM和CatBoost,通过原理剖析、参数详解和实战对比,助你全面掌握工业级建模利器。一、算法原理深度对比1.XGBoost:工程优化的奠基者核心创新:二阶泰勒展开:利用损失函数的一阶导和二阶导
- 算法随笔_57 : 游戏中弱角色的数量
程序趣谈
算法python数据结构
上一篇:算法随笔_56:好子数组的最大分数-CSDN博客=====题目描述如下:你正在参加一个多角色游戏,每个角色都有两个主要属性:攻击和防御。给你一个二维整数数组properties,其中properties[i]=[attacki,defensei]表示游戏中第i个角色的属性。如果存在一个其他角色的攻击和防御等级都严格高于该角色的攻击和防御等级,则认为该角色为弱角色。更正式地,如果认为角色i弱
- 神经网络的学习 求梯度
阿崽meitoufa
神经网络学习人工智能
importsys,ossys.path.append(os.pardir)importnumpyasnpfromcommon.functionsimportsoftmax,cross_entropy_errorfromcommon.gradientimportnumerical_gradient#simpleNet类classsimpleNet:def__init__(self):self.W=
- DeepSeek 学习路线图
CarlowZJ
学习deepseek
以下是基于最新搜索结果整理的DeepSeek学习路线图,涵盖从基础到高级的系统学习路径,帮助你全面掌握DeepSeek的使用和应用开发。一、基础知识与预备技能1.数学基础线性代数:掌握矩阵运算和向量空间,这是深度学习的核心。概率统计:理解贝叶斯理论和概率分布,用于模型训练和推理。微积分:了解优化算法中的梯度下降等概念。2.编程基础Python:掌握Python编程,这是深度学习和AI开发的主要语言
- (《机器学习》完整版系列)附录 ——3、复合函数梯度的链式法则(链的次序不可交换)
人工干智能
周志华【西瓜书】辅导《机器学习》算法机器学习线性代数
推导了复合函数梯度的链式法统一形式。首创了的链式记号,非常易记:分子右挪+分数约分,特别是它强调了链的表达次序,由于矩阵积没有交换律,故该链的次序不可交换。注:修正了一般教材中的错误次序(在标量时正确)链式法则在此基础上,我们讨论复合函数的链式法则(只讨论复合后为标量函数的情况,即zzz为标量)。1.当自变量为标量xxx时,梯度为标量:∂z∂x\frac{\partialz}{\partialx}
- 用deepseek学大模型05逻辑回归
wyg_031113
逻辑回归机器学习人工智能
deepseek.com:逻辑回归的目标函数,损失函数,梯度下降标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,预测结果的可视化展示,模型应用场景和优缺点,及如何改进解决及改进方法数据推导。逻辑回归全面解析一、数学推导模型定义:逻辑回归模型为概率预测模型,输出P(y=1∣x)=σ(w⊤x+b)P(y=1\mid\mathbf{x})=\sigma(\mathbf{w}^\
- HUSTOJ随笔4-建立分布式判题系统
歪嘴鱼
hustoj数据库服务器数据库远程连接虚拟机web服务
HUSTOJ支持一台数据库服务器,多台web服务器和多台判题服务器,以承担较高的访问负荷。首先,需要创建用于从远程连接数据库的帐号。GRANTALLPRIVILEGESONjol.*TO'judge'@'%'IDENTIFIEDBY'judge_pass'WITHOUTGRANTOPTION;flushprivileges复制代码其中jol为数据库,judge为帐号,judge_pass为密码。注
- 嵌入式人工智能应用-第四章 逻辑回归 8
数贾电子科技
嵌入式人工智能应用人工智能逻辑回归算法
逻辑回归1逻辑回归介绍1.1背景介绍1.2原理1.2.1预测函数1.2.2判定边界1.2.3损失函数1,2,4梯度下降函数1.2.5分类拓展1.2.6正则化2实验代码3实验结果说明1逻辑回归介绍1.1背景介绍逻辑回归的过程可以概括为:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。Logistic回归虽然名字里带“回归”,但是
- 机器学习课程的常见章节结构
zhangfeng1133
机器学习分类学习
以下是机器学习课程的常见章节结构,结合了搜索结果中的信息:1.机器学习基础知识机器学习的定义与分类监督学习、无监督学习、半监督学习、强化学习机器学习的产生与发展机器学习的历史与现代应用经验误差与过拟合过拟合与欠拟合的概念及解决方案评估方法与性能度量交叉验证、准确率、召回率、F1分数等偏差与方差偏差-方差权衡及其对模型的影响2.经典机器学习算法2.1线性模型一元线性回归与多元线性回归梯度下降算法(批
- 机器学习—逻辑回归
60岁的程序猿
1024程序员节机器学习逻辑回归人工智能算法
本内容是博主自学机器学习总结的。由于博主水平有限,内容可能有些许错误。如有错误,请发在评论区。目录1、基础概念1.1、什么是逻辑回归1.2、逻辑回归与线性回归的区别1.3应用场景2、逻辑回归模型2.1、模型定义2.2、Sigmoid函数2.3、决策边界2.4、概率解释3、模型训练3.1、损失函数3.2、梯度下降法3.3、牛顿法3.4、拟牛顿法3.4、正则化3.5、总结4、多分类问题4.1、一对多(
- 【机器学习】向量化使得简单线性回归性能提升
若兰幽竹
机器学习机器学习线性回归人工智能
向量化使得简单线性回归性能提升一、摘要二、向量化运算概述三、向量化运算在简单线性回归中的应用四、性能测试与结果分析一、摘要本文主要讲述了向量化运算在简单线性回归算法中的应用。通过回顾传统for循环方式实现的简单线性回归算法,介绍了如何通过最小二乘法计算a的值。然而,这种方式在计算性能上存在效率较低的问题。为了提高性能,视频引入了向量化运算的概念,即将计算过程从循环方式转变为向量之间的计算。通过向量
- 【ATU 随笔记】整车网路系统架构之探讨 ( 一 )
WPG大大通
NXP产线大大通笔记经验分享CAN汽车车载系统
一、前言在现今的车辆设计中,通讯架构扮演着至关重要的角色,以确保车内各个电子控制单元(ElectronicControlUnit,ECU)能够快速且可靠地交换资讯。车用通讯协议的选择多样且具备不同的应用特性,其中包括CAN(ControllerAreaNetwork)、LIN(LocalInterconnectNetwork)、Ethernet和FlexRay等。每一种通讯协议皆有其特定的应用范畴
- 视觉分析之边缘检测算法
Erekys
计算机视觉人工智能音视频
9.1Roberts算子Roberts算子又称为交叉微分算法,是基于交叉差分的梯度算法,通过局部差分计算检测边缘线条。常用来处理具有陡峭的低噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想。其缺点是对边缘的定位不太准确,提取的边缘线条较粗。importcv2ascvimportnumpyasnpimportmatplotlib.pyplotasplt#读取图像img=cv.im
- 机器学习(四) 本文(2万字) | 梯度下降GD原理 | Python复现 |
小酒馆燃着灯
机器学习人工智能深度学习目标检测pythonpytorch
第四章梯度下降一引入梯度二从一元到多元2.1一元函数2.1.1引入梯度下降2.1.2学习率2.1.3继续更新迭代2.2二元函数2.3多元函数三多种梯度方法3.1批量梯度下降(BatchGradientDescent,BGD)3.1.1对目标函数求偏导3.1.2每次迭代对参数进行更新3.1.3优缺点3.2随机梯度下降(StochasticGradientDescent,SGD)3.2.1对目标函数求
- 机器学习杂记
被自己蠢哭了
深度学习机器学习
过拟合处理方法:早停正则化dropout数据增广避免局部极小值方法:以不同的初始值来训练网络,最终选取最小的。使用模拟退火技术。模拟退火在每一步都以一定的概率接受比当前解更差的结果,从而有助于跳出局部极小。在每一步迭代过程中,接受次优解的概率要随着时间的推移而逐渐降低,从而保证算法稳定。使用随机梯度下降。与标准梯度下降精确计算梯度不同,随机梯度下降算法在计算梯度时加入了随机因素。于是,即使陷入局部
- Matlab 点云移动最小二乘法(MLS)
大鱼BIGFISH
点云数据处理matlab最小二乘法点云移动最小二乘法(MLS)
文章目录一、简介二、实现代码三、实现效果参考文献一、简介我们要明白MLS是想用一组基函数来局部近似我们的目标函数,它非常类似于我们所学的泰勒公式,只不过它是基于局部的。这里我们以一维的MLS为例,其具体的原理如下所述:假设Ω为范数向量空间,而u为Ω内场变量的标量。为了形成一个近似函数uau^au
- 基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
xiao5kou4chang6kai4
深度学习遥感勘测python深度学习分类
专题一:深度学习发展与机器学习深度学习的历史发展过程机器学习,深度学习等任务的基本处理流程梯度下降算法讲解不同初始化,学习率对梯度下降算法的实例分析从机器学习到深度学习算法专题二深度卷积网络、卷积神经网络、卷积运算的基本原理池化操作,全连接层,以及分类器的作用BP反向传播算法的理解一个简单CNN模型代码理解特征图,卷积核可视化分析专题三TensorFlow与keras介绍与入门TensorFlow
- 如果MLlib 中没有所需要的模型,如何使用 Spark 进行分布式训练?
是纯一呀
WSLDockerAIspark分布式mllib
如果MLlib中没有你所需要的模型,并且不打算结合更强大的框架(如TensorFlowOnSpark或Horovod),仍然可以使用Spark进行分布式训练,但需要手动处理训练任务的分配、数据准备、模型训练、结果合并和模型更新等过程。模型训练阶段将模型的训练任务分配到Spark集群的各个节点。数据并行:每个节点会处理数据的不同部分,并计算该部分的梯度或模型参数。自定义算法:如果使用的是自定义算法(
- 卷积神经网络之AlexNet经典神经网络,实现手写数字0~9识别
知识鱼丸
深度学习神经网络cnn人工智能深度学习AlexNet经典神经网络
深度学习中较为常见的神经网络模型AlexNet,AlexNet是一个采用GPU训练的深层CNN,本质是种LeNet变体。由特征提取层的5个卷积层两个下采样层和分类器中的三个全连接层构成。先看原理:AlexNet网络特点采用ReLU激活函数,使训练速度提升6倍采用dropout层,防止模型过拟合通过平移和翻转的方式对数据进行增强采用LRN局部响应归一化,限制数据大小,防止梯度消失和爆炸。但后续证明批
- 8-项目实战-信用卡数字识别
#北极星star
Opencv图像处理框架实战opencv计算机视觉人工智能
目录(1)总体流程与方法(2)代码实现(3)识别结果(1)总体流程与方法①读取模板图像:加载包含数字模板的图像,并提取每个数字的轮廓,将它们作为模板存储。②读取输入图像:加载待识别的信用卡图像,并进行预处理。③提取数字区域:通过一系列图像处理操作(如礼帽操作、梯度计算、闭操作等)提取可能包含数字的区域。④轮廓排序与筛选:找到提取区域的轮廓,并根据轮廓的宽高比和尺寸筛选出符合条件的数字区域。⑤数字识
- 训练与优化
钰见梵星
小土堆PyTorch深度学习深度学习pytorch人工智能
训练与优化损失函数与反向传播损失函数能够衡量神经网络输出与目标值之间的误差,同时为反向传播提供依据,计算梯度来优化网络中的参数。torch.nn.L1Loss计算所有预测值与真实值之间的绝对差。参数为reduction:'none':不对损失进行任何求和或平均,返回每个元素的损失。'mean':对损失进行平均,默认选项。'sum':对所有样本的损失进行求和。importtorchinput=tor
- 【深度学习】学习率调度策略
黑白交界
深度学习学习深度学习
什么是学习率可以理解为模型在每一次迭代中的模型更新调整的幅度,“学习”新信息的速度。学习率定义了模型权重(参数)在梯度下降或其他优化算法中的更新步伐。较大的学习率意味着在每次参数更新时,模型会进行更大幅度的调整,而较小的学习率则意味着细致的、渐进的调整。适当的学习率可以帮助模型跳出局部最优解。当使用较大的学习率时,模型有可能跨越一些小的局部最优,从而找到全局最优解,但也有可能错过全局最优。因此,在
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache