- [01] 动态规划解题套路框架
_魔佃_
本文解决几个问题:动态规划是什么?解决动态规划问题有什么技巧?如何学习动态规划?刷题刷多了就会发现,算法技巧就那几个套路。所以本文放在第一章,来扒一扒动态规划的裤子,形成一套解决这类问题的思维框架,希望能够成为解决动态规划问题的一部指导方针。本文就来讲解该算法的基本套路框架,下面上干货。labuladong的算法小抄首先,动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不
- 最优化方法Python计算:一元函数搜索算法——二分法
戌崂石
最优化方法最优化方法python
设一元目标函数f(x)f(x)f(x)在区间[a0,b0]⊆R[a_0,b_0]\subseteq\text{R}[a0,b0]⊆R(其长度记为λ\lambdaλ)上为单峰函数,且在(a0,b0)(a_0,b_0)(a0,b0)内连续可导,即其导函数f′(x)f'(x)f′(x)在(a0,b0)(a_0,b_0)(a0,b0)内连续。在此增强的条件下,可以加速迭代计算压缩区间的过程。仍然设置计算精
- 机器学习最优化方法之梯度下降
whemy
1、梯度下降出现的必然性利用最小二乘法求解线性回归的参数时,求解的过程中会涉及到矩阵求逆的步骤。随着维度的增多,矩阵求逆的代价会越来越大,而且有些矩阵没有逆矩阵,这个时候就需要用近似矩阵,影响精度。另外,在绝大多数机器学习算法情况下(如LR),损失函数要复杂的多,根本无法得到参数估计值的表达式。因此需要一种更普适的优化方法,这就是梯度下降。其实随机梯度下降才是实际应用中最常用的求解方法,但是其基础
- 深度学习之反向传播算法(backward())
Tomorrowave
人工智能深度学习算法人工智能
文章目录概念算法的思路概念反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。(误差的反向传播)算法的思路多层神经网络的教学过程反向传播算法为了说明这一点使用如下图所示处理具有两个输入和一
- 机器学习-梯度下降法
小旺不正经
人工智能机器学习人工智能python
不是一个机器学习算法是一种基于搜索的最优化方法作用:最小化一个损失函数梯度上升法:最大化一个效用函数并不是所有函数都有唯一的极值点解决方法:多次运行,随机化初始点梯度下降法的初始点也是一个超参数代码演示importnumpyasnpimportmatplotlib.pyplotaspltplot_x=np.linspace(-1.,6.,141)plot_y=(plot_x-2.5)**2-1.p
- 最优化理论习题(与考试相关)
ˇasushiro
最优化理论笔记
文章目录凸集与凸函数的证明单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法凸集与凸函数的证明凸函数证明就是求HessianHessianHessian矩阵是否为正定矩阵即可单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法
- 最优化方法之梯度下降法和牛顿法
thatway1989
算法分析机器学习深度学习线性代数
大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优化,从而训练出最好的模型。最常见的最优化方法有梯度下降法、牛顿法。最优化方法:最优化方法,即寻找函数极值点的数值方法。通常采用的是迭代法,它从一个初始点x0开始,反复使用某种规则从x.k移动到下一个点x.k+1,直至到达函数的极值点。这些规则一般会利用一阶导数信息即梯度,或者二阶导数信息即Hessian矩阵。算
- 进化计算——求解优化问题(一)
_hermit:
计算智能人工智能学习
进化计算——求解优化问题文章目录一、优化问题是什么?二、优化问题分类1.依据目标数量分类2.依据变量类型分类3.依据约束条件分类三、优化问题的数学模型四、最优化方法1.两者对比-求解步骤2.两者对比-优缺点五、生物学遗传进化观点进化计算的一般步骤:六、遗传算法(GA)(重点)1.遗传算法基本原理几个概念说明:2.遗传算法的基本结构3.遗传算法与传统优化方法比较:七、用遗传算法求解问题(重点)1.编
- 梯度下降法(Gradient Descent)
Debroon
#机器学习#凸优化
梯度下降法(GradientDescent)梯度下降法批量梯度下降法随机梯度下降法scikit-learn中的随机梯度下降法小批量梯度下降法梯度下降法梯度下降法,不是一个机器学习算法(既不是再做监督学习,也不是非监督学习,分类、回归问题都解决不了),是一种基于搜索的最优化方法。梯度下降法作用是,最小化一个损失函数;而如果我们要最大化一个效用函数,应该使用梯度上升法。这个二维平面描述了,当我们定义了
- 凸优化 3:最优化方法
Debroon
#凸优化算法
凸优化3:最优化方法最优化方法适用场景对比费马引理一阶优化算法梯度下降最速下降二阶优化算法牛顿法Hessian矩阵Hessian矩阵的逆Hessian矩阵和梯度的区别牛顿法和梯度下降法的区别拟牛顿法DFP、BFGS/L-BFGS数值优化算法坐标下降法SMO算法基于导数的函数优化解析优化算法/精确解无约束问题-求解驻点方程有等式约束问题-拉格朗日乘数法有等式和不等式约束问题-KKT条件基于随机数函数
- 参数更新方法 初始值 抑制过拟合 Batch Normalization等 《深度学习入门》第六章
Dirac811
layout:posttitle:深度学习入门基于Python的理论实现subtitle:第六章与学习相关的技巧tags:[Machinelearning,Reading]第六章与学习相关的技巧本章像是一个补充,主题涉及寻找最优权重参数的最优化方法、权重参数的初始值、超参数的设定方法等。此外,为了应对过拟合,本章还将介绍权值衰减、Dropout等正则化方法,并进行实现。最后将对近年来众多研究中使用
- 【最优化方法】对称矩阵的对角化
撕得失败的标签
最优化方法矩阵线性代数正交化对角化
文章目录正交化方法示例矩阵正交化正交化方法设RnR^nRn中线性无关组a1,a2,a3,…,ana_1,a_2,a_3,\dots,a_na1,a2,a3,…,an,令β1=α1β2=α2−[α2β1]∣∣β1∣∣β1β3=α3−[α3β1]∣∣β1∣∣β1−[α3β2]∣∣β2∣∣β2βn=α3−[αnβ1]∣∣β1∣∣β1−⋯−[αnβn−1]∣∣βn−1∣∣βn−1\begin{aligne
- 【最优化方法】无约束优化问题(最速下降法、牛顿法、最小二乘)
撕得失败的标签
最优化方法线性代数最小二乘法最速下降法牛顿法无约束最优化
文章目录最速下降法示例牛顿法阻尼牛顿法示例最小二乘问题最速下降法最速下降法(SteepestDescentMethod)是一种基于负梯度方向进行迭代的最优化算法,用于寻找一个函数的最小值。该方法也被称为梯度下降法,是一种迭代的一阶优化算法。算法的基本思想是从当前点出发,沿着当前点的负梯度方向,以一定的步长(学习率)移动到新的点,重复这个过程直至达到停止条件。下面是最速下降法的基本步骤:给出x0∈R
- 【最优化方法】约束最优化问题
撕得失败的标签
最优化方法约束最优化KKT定理二次罚函数方法
文章目录不等式约束问题可行方向线性化可行方向序列可行方向KKT定理示例等式约束问题二次罚函数方法示例不等式约束问题考虑约束最优化问题minf(x)s.t.ci(x)=0,i=1,2,⋯ ,m′,ci(x)⩾0,i=m′+1,m′+2,⋯ ,m,\begin{aligned}\min&\quadf(x)\\\mathrm{s.t.}&\quadc_i(x)=0,\quadi=1,2,\cdots,
- 【最优化方法】无约束优化问题(函数梯度、下降方向、最优性)
撕得失败的标签
最优化方法线性代数最优化方法下降方向无约束优化问题最优性条件
文章目录下降方向下降方向与梯度关系例题偏导数方向导数梯度(导数)下降方向最优性条件一阶必要条件二阶必要条件二阶充分条件无约束凸规划的最优性条件我们把一元方程推广到nnn维无约束极小化问题,得到解无约束优化问题minx∈Rnf(x)\min_{x\in\mathbf{R}^n}f(x)x∈Rnminf(x)下降方向设f(x)f(x)f(x)为定义在空间Rn\mathbf{R}^nRn上的连续函数,
- 最优化方法Python计算:无约束优化应用——神经网络分类模型
戌崂石
最优化方法python神经网络分类最优化方法机器学习
Hello,2024.用MLPModel类(详见博文《最优化方法Python计算:无约束优化应用——神经网络回归模型》)和Classification类(详见博文《最优化方法Python计算:无约束优化应用——逻辑分类模型》)可以构建用于分类的神经网络。classMLPClassifier(Classification,MLPModel):'''神经网络分类模型'''用MLPClassifier解
- 【最优化方法】凸优化基本概念
撕得失败的标签
最优化方法线性代数最优化方法凸优化
文章目录凸优化(ConvexOptimization)凸集(ConvexSet)凸集合的运算(OperationsonConvexSets)凸函数(ConvexFunction)凸优化问题(ConvexOptimizationProblem)凸优化(ConvexOptimization)凸优化问题具有许多重要的性质,使得其在理论和实践中都得到广泛应用。这些性质包括全局最优解的存在性、局部最优解即为
- 【最优化方法】凸二次优化
撕得失败的标签
最优化方法线性代数最优化方法凸二次优化海森矩阵Hessian
文章目录凸函数的判别凸二次优化海森矩阵(Hessianmatrix)判断函数凹凸性示例凸函数的判别设S⊂RnS\subsetR^nS⊂Rn是非空开凸集,f:S→Rf:S\rightarrowRf:S→R可微,则(1)fff是SSS上的凸函数,当且仅当f(x2)⩾f(x1)+∇f(x1)T(x2−x1),∀x1,x2∈Sf(x_2)\geqslantf(x_1)+\nablaf(x_1)^T(x_2
- 【最优化方法】矩阵的二次型
撕得失败的标签
最优化方法矩阵线性代数最优化方法
文章目录矩阵二次型的定义正定性、负定性、半定性和不定性示例矩阵二次型的定义矩阵的二次型是一个与矩阵和向量相关的二次多项式。对于一个实数域上的二次型,给定一个n×nn×nn×n的对称矩阵AAA和一个列向量xxx(xxx是一个n×1n×1n×1的列向量),其二次型定义为:Q(x)=xTAxQ(x)=x^TAxQ(x)=xTAx这个二次型表示可以更详细地展开为:Q(x)=∑i=1n∑j=1naijxiy
- 最优化方法Python计算:无约束优化应用——神经网络回归模型
戌崂石
最优化方法python神经网络回归最优化方法机器学习
人类大脑有数百亿个相互连接的神经元(如下图(a)所示),这些神经元通过树突从其他神经元接收信息,在细胞体内综合、并变换信息,通过轴突上的突触向其他神经元传递信息。我们在博文《最优化方法Python计算:无约束优化应用——逻辑回归模型》中讨论的逻辑回归模型(如下图(b)所示)与神经元十分相似,由输入端接收数据x=(x1x2⋮xn)\boldsymbol{x}=\begin{pmatrix}x_1\\
- 最优化方法Python计算:无约束优化应用——逻辑分类模型
戌崂石
最优化方法python分类机器学习最优化方法
逻辑回归模型更多地用于如下例所示判断或分类场景。例1某银行的贷款用户数据如下表:欠款(元)收入(元)是否逾期17000800Yes220002500No350003000Yes440004000No520003800No显然,客户是否逾期(记为yyy)与其欠款额(记为x1x_1x1)和收入(记为x2x_2x2)相关。如果将客户逾期还款记为1,未逾期记为0,我们希望根据表中数据建立R2→{0,1}\
- 最优化方法Python计算:无约束优化应用——逻辑回归模型
戌崂石
最优化方法python逻辑回归机器学习最优化方法
S型函数sigmoid(x)=11+e−x\text{sigmoid}(x)=\frac{1}{1+e^{-x}}sigmoid(x)=1+e−x1将全体实数R\text{R}R映射到(0,1)(0,1)(0,1),称为逻辑函数。其图像为该函数连续、有界、单调、可微,性质量好。拟合函数为F(w;x)=sigmoid((x⊤,1)w)=11+e−(x⊤,1)wF(\boldsymbol{w};\bo
- 机器学习中常用的矩阵公式
ᝰꫛꪮꪮꫜ hm
机器学习矩阵机器学习深度学习
因为有监督的机器学习一般是,给定输入x,选择一个模型f作为函数,有f(x)预测出。要得到f的参数,需要定义一个损失函数,来判断预测值与实际值y之间的接近程度。模型学习的过程是求使得loss函数L(f(x),y)最小的参数,这是一个优化问题,一般采用和梯度相关的最优化方法,如梯度下降。一、矩阵迹的定义矩阵的迹:就是矩阵的主对角线上所有元素的和。1.矩阵A(n*n)的迹:2.矩阵A(m*n)B(n*m
- 算法中的最优化方法与实现(第4课 二次型规划的有效集法)
komjay
算法中的最优化方法与实现算法
一、学习目标1.学习有效集法如何求解二次型规划问题二、问题描述三、算法思想1.在每次迭代中,我们都以已知的可行点为起点,把在该点起作用约束作为等式约束,在此约束下极小化目标函数f(x),其余的约束暂且不管,求得比较好的可行点后,再重复以上做法。2.原理推导:(1)对每一步迭代中,定义好现今的问题:(2)修改输入x和f(x)函数,原问题也发生变化:(3)确定下一个可行点的条件:(4)如果不是可行点,
- 算法中的最优化方法与实现 (第5 6课 无约束的非线性规划)
komjay
算法中的最优化方法与实现算法1024程序员节
一、学习目标1.了解非线性问题的标准形式和各种求解方法2.学习牛顿法和拟牛顿法3.学习方向测定-线性最小方法4.学习各种搜索法二、非线性问题1.非线性问题的规范式相比于前两种问题,会显得十分简单:需要注意:这节课先讨论没有约束条件的非线性问题,这样能保证我们在使用后续算法进行自由的搜索。2.求解算法分三类:第一类是以牛顿法为主体的方法;第二类是通过方向测定和线性优化的方法进行优化;第三类是不进行求
- 算法中的最优化方法和实现 (第7课 有约束的非线性规划)
komjay
算法中的最优化方法与实现算法
一、学习目标根据约束条件的类型,将问题分为4类:线性等式、非线性等式、线性不等式、非线性不等式。学习对于不同的问题,使用不同的方法进行求解。统一的思想都是消解法,即消去约束条件,将有约束的问题转化为无约束的问题,再进行求解。注意:我们说的非线性规划,说的是目标函数是非线性的,而上面讲的线性和非线性,指的是约束函数。二、线性等式约束的非线性规划对于等式约束,我们可以通过映射法将约束条件约去。原理就是
- 算法中的最优化方法与实现(第3课 二次型规划)
komjay
算法中的最优化方法与实现算法
一、学习目标1.了解二次型问题的内容2.了解改进单纯形法解决二次型问题的过程二、二次型问题1.与线性问题相同,二次型问题的描述形式也有两类(type1:一般形式,type2:标准形式):其中H矩阵是二次项的参数矩阵,该项会直接导致整个模型是否存在最优解的问题。下面展示几个特殊二次项的图像:下面左图存在多个极值点,右图则不存在最优值:2.关于将一般形式转化为标准形式,其方式与线性问题一样:三、改进单
- 最优化方法Python计算:无约束优化应用——回归模型的测试
戌崂石
最优化方法python线性回归最优化方法机器学习
实践中,除了用训练数据训练回归模型,使用线性回归模型做预测前,通常需要对训练结果进行测试。所谓测试指的是用另一组带有标签的数据数据集(xi⊤,yi),i=1,2,⋯ ,m(\boldsymbol{x}^\top_i,y_i),i=1,2,\cdots,m(xi⊤,yi),i=1,2,⋯,m,用训练所得的最优模式w0\boldsymbol{w}_0w0,得预测值yi′y'_iyi′,i=1,2,⋯
- 最优化方法Python计算:信赖域算法
戌崂石
最优化方法python人工智能最优化方法
作为求解目标函数f(x)f(\boldsymbol{x})f(x)无约束优化问题的策略之一的信赖域方法,与前讨论的线性搜索策略略有不同。线性搜索策略是在当前点xk\boldsymbol{x}_kxk处先确定搜索方向dk\boldsymbol{d}_kdk,再确定在该方向上的搜索步长αk\alpha_kαk。以此计算下一步搜索点xk+1=xk+αkdk.\boldsymbol{x}_{k+1}=\b
- 最优化方法Python计算:BFGS算法
戌崂石
最优化方法python机器学习最优化方法
按秩1法(详见博文《最优化方法Python计算:秩1拟牛顿法》)计算的修正矩阵Qk+1=Qk+Ek\boldsymbol{Q}_{k+1}=\boldsymbol{Q}_k+\boldsymbol{E}_kQk+1=Qk+Ek无法保证其正定性。这时,dk+1=−Qk+1gk+1\boldsymbol{d}_{k+1}=-\boldsymbol{Q}_{k+1}\boldsymbol{g}_{k+1
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><