PyTorch神经网络+VGG

PyTorch神经网络: 

import torch
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        # 1 input image channel, 6 output channels, 5x5 square convolution
        # kernel
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
        return num_features


net = Net()
print(net)

params = list(net.parameters())
print(len(params))
print(params[0].size())  # conv1's .weigh

input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)

PyTorch神经网络+VGG_第1张图片

 

vgg:

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, regularizers
import numpy as np
import os
import cv2
import matplotlib.pyplot as plt


os.environ["CUDA_VISIBLE_DEVICES"] = "1"

resize = 224
path ="D:\\laizheli111\\dog-cat\\train7_3\\train"

def load_data():
    imgs = os.listdir(path)
    num =len(imgs)
    train_data = np.empty((100, resize, resize, 3), dtype="int32")
    train_label = np.empty((100, ), dtype="int32")
    test_data = np.empty((100, resize, resize, 3), dtype="int32")
    test_label = np.empty((100, ), dtype="int32")
    for i in range(100):
        if i % 2:
            train_data[i] = cv2.resize(cv2.imread(path+'/'+ 'dog.' + str(i) + '.jpg'), (resize, resize))
            train_label[i] = 1
        else:
            train_data[i] = cv2.resize(cv2.imread(path+'/' + 'cat.' + str(i) + '.jpg'), (resize, resize))
            train_label[i] = 0
    for i in range(100, 200):
        if i % 2:
            test_data[i-100] = cv2.resize(cv2.imread(path+'/' + 'dog.' + str(i) + '.jpg'), (resize, resize))
            test_label[i-100] = 1
        else:
            test_data[i-100] = cv2.resize(cv2.imread(path+'/' + 'cat.' + str(i) + '.jpg'), (resize, resize))
            test_label[i-100] = 0
    return train_data, train_label, test_data, test_label


def vgg16():
    weight_decay = 0.0005
    nb_epoch = 100
    batch_size = 32
    
    # layer1
    model = keras.Sequential()
    model.add(layers.Conv2D(64, (3, 3), padding='same',
                     input_shape=(224, 224, 3), kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(layers.Activation('relu'))
    model.add(layers.BatchNormalization())
    model.add(layers.Dropout(0.3))
    # layer2
    model.add(layers.Conv2D(64, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(layers.Activation('relu'))
    model.add(layers.BatchNormalization())
    model.add(layers.MaxPooling2D(pool_size=(2, 2)))
    # layer3
    model.add(layers.Conv2D(128, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(layers.Activation('relu'))
    model.add(layers.BatchNormalization())
    model.add(layers.Dropout(0.4))
    # layer4
    model.add(layers.Conv2D(128, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(layers.Activation('relu'))
    model.add(layers.BatchNormalization())
    model.add(layers.MaxPooling2D(pool_size=(2, 2)))
    # layer5
    model.add(layers.Conv2D(256, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(layers.Activation('relu'))
    model.add(layers.BatchNormalization())
    model.add(layers.Dropout(0.4))
    # layer6
    model.add(layers.Conv2D(256, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(layers.Activation('relu'))
    model.add(layers.BatchNormalization())
    model.add(layers.Dropout(0.4))
    # layer7
    model.add(layers.Conv2D(256, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(layers.Activation('relu'))
    model.add(layers.BatchNormalization())
    model.add(layers.MaxPooling2D(pool_size=(2, 2)))
    # layer8
    model.add(layers.Conv2D(512, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(layers.Activation('relu'))
    model.add(layers.BatchNormalization())
    model.add(layers.Dropout(0.4))
    # layer9
    model.add(layers.Conv2D(512, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(layers.Activation('relu'))
    model.add(layers.BatchNormalization())
    model.add(layers.Dropout(0.4))
    # layer10
    model.add(layers.Conv2D(512, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(layers.Activation('relu'))
    model.add(layers.BatchNormalization())
    model.add(layers.MaxPooling2D(pool_size=(2, 2)))
    # layer11
    model.add(layers.Conv2D(512, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(layers.Activation('relu'))
    model.add(layers.BatchNormalization())
    model.add(layers.Dropout(0.4))
    # layer12
    model.add(layers.Conv2D(512, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(layers.Activation('relu'))
    model.add(layers.BatchNormalization())
    model.add(layers.Dropout(0.4))
    # layer13
    model.add(layers.Conv2D(512, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(layers.Activation('relu'))
    model.add(layers.BatchNormalization())
    model.add(layers.MaxPooling2D(pool_size=(2, 2)))
    model.add(layers.Dropout(0.5))
    # layer14
    model.add(layers.Flatten())
    model.add(layers.Dense(512, kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(layers.Activation('relu'))
    model.add(layers.BatchNormalization())
    # layer15
    model.add(layers.Dense(512, kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(layers.Activation('relu'))
    model.add(layers.BatchNormalization())
    # layer16
    model.add(layers.Dropout(0.5))
    model.add(layers.Dense(2))
    model.add(layers.Activation('softmax'))
    
    return model

if __name__ == '__main__':
    
    train_data, train_label, test_data, test_label = load_data()
    train_data = train_data.astype('float32')
    test_data = test_data.astype('float32')
    train_label = keras.utils.to_categorical(train_label, 2)
    test_label = keras.utils.to_categorical(test_label, 2)
   
    model = vgg16()
    sgd = tf.keras.optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) #设置优化器为SGD
    model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
    history = model.fit(train_data, train_label,
                        batch_size=20,
                        epochs=10,
                        validation_split=0.2,  #把训练集中的五分之一作为验证集
                        shuffle=True)
    scores = model.evaluate(test_data,test_label,verbose=1)
    print(scores)
    model.save('model/vgg16dogcat.h5')
    
    acc = history.history['accuracy']  # 获取训练集准确性数据
    val_acc = history.history['val_accuracy']  # 获取验证集准确性数据
    loss = history.history['loss']  # 获取训练集错误值数据
    val_loss = history.history['val_loss']  # 获取验证集错误值数据
    epochs = range(1, len(acc) + 1)
    plt.plot(epochs, acc, 'bo', label='Trainning acc')  # 以epochs为横坐标,以训练集准确性为纵坐标
    plt.plot(epochs, val_acc, 'b', label='Vaildation acc')  # 以epochs为横坐标,以验证集准确性为纵坐标
    plt.legend()  # 绘制图例,即标明图中的线段代表何种含义
 
    plt.show()

PyTorch神经网络+VGG_第2张图片

 

你可能感兴趣的:(人工智能,pytorch,神经网络,深度学习)