- 自建 DeepSeek 时代已来,联网搜索如何高效实现
云原生
作者:张添翼(澄潭)开源LLM的新纪元:DeepSeek带来的技术平权随着DeepSeek等高质量开源大模型的涌现,企业自建智能问答系统的成本已降低90%以上。基于7B/13B参数量的模型在常规GPU服务器上即可获得商业级响应效果,配合Higress开源AI网关的增强能力,开发者可快速构建具备实时联网搜索能力的智能问答系统。Higress:零代码增强LLM的瑞士军刀Higress作为云原生API网
- 模型上新!体验文心大模型4.5卓越性能,文心快码邀您探索
前端后端java人工智能程序员
3月16日,文心大模型4.5和文心大模型X1正式发布!当天,文心快码BaiduComate也发布了文心大模型4.5支持的新版本,为用户带来更加强大的智能交互体验。即日起,用户可以在文心快码BaiduComate的【Chat】功能中,选择切换至ERNIE-4.5-8K-Preview,体验这一新一代原生多模态大模型的卓越性能。文心大模型4.5原生多模态基础大模型文心大模型4.5是百度自主研发的新一代
- 大模型转型之路:必要性与未来前景,迎接智能时代的浪潮_转行大模型
大模型入门学习
人工智能语言模型AI大模型AI大模型程序员转行
随着人工智能(AI)技术的迅猛发展,特别是大型语言模型(LLM,LargeLanguageModels)的崛起,各行各业正迎来一场前所未有的技术革命。对于普通程序员而言,转行进入大模型领域不仅是对个人职业发展的战略性投资,也是顺应时代潮流、把握未来机遇的重要选择。本文将探讨转行大模型的必然性和该领域的未来发展前景。一、转行大模型的必然性技术普及化与学习资源丰富互联网的发展极大地降低了知识获取的成本
- 《AI大模型趣味实战》 No3:快速搭建一个漂亮的AI家庭网站-相册/时间线/日历/多用户/个性化配色/博客/聊天室/AI管家(下)
带娃的IT创业者
AI大模型趣味实战人工智能xcodemacos
《AI大模型趣味实战》No3:快速搭建一个漂亮的AI家庭网站-相册/时间线/日历/多用户/个性化配色/博客/聊天室/AI管家(下)摘要本文介绍了家庭网站V1.3版本的更新内容,主要聚焦于AI管家功能的优化与完善。V1.3版本对AI管家模块进行了全面升级,包括使用更快速的GLM-4-Flash模型、优化语音交互体验、改进用户界面以及增强系统稳定性。本文详细解析了这些改进的技术实现,包括语音识别与合成
- 3分钟看懂MCP协议:AI领域的“万能插头“革命
东锋17
人工智能人工智能github
3分钟看懂MCP协议:AI领域的"万能插头"革命一、MCP简介模型上下文协议(ModelContextProtocol,MCP)是由Anthropic公司于2024年11月推出的开放标准,旨在解决AI模型与外部数据源、工具之间的通信壁垒。它像AI领域的"USB-C接口",通过统一协议实现大型语言模型(LLM)与本地文件、数据库、API等资源的无缝连接,打破数据孤岛限制,让AI应用真正具备"连接万物
- 注意力机制:GPT等大模型的基石
人工智能
1啥是注意力?人类观察事物,能快速判断一种事物,是因为大脑能很快把注意力放在事物最具辨识度的部分从而作出判断,而非从头到尾一览无遗观察一遍才能有判断。基于这样的观察实践,产生了注意力机制(AttentionMechanism)。想象你在人群中找一个穿红衣服的人。你不会一一检查每个人的鞋子、裤子、头发,而是直接把目光锁定在衣服颜色,因为那是“最有辨识度的特征”。大脑就是这么高效工作的。注意力机制是模
- 网络基础,IOS七层模型架构与TCP/IP协议
bob_gem
网络架构
目录网络基础什么是网络网络的形成及规模常见的网络设备OSI七层与TCP/IP协议OSI参考模型7.应用层6.表示层5.会话层4.传输层3.网络层2.数据链路层:1.物理层TCP/IP协议数据封装理想的网络设计网络基础什么是网络网络:计算机网络是一组计算机或网络设备通过有形的线缆或无形的媒介如无线,连接起来,按照一定的规则,进行通信的集合。通信:是指人与人,人与物,物与物之间通过每种媒介和行为进行的
- 7招教你掌握用DeepSeek辅助论文写作的提示词技巧
学境思源AcademicIdeas
学境思源AI写作ChatGPT人工智能
随着人工智能技术的快速发展,大模型(如DeepSeek、ChatGPT等)已经成为论文写作的重要辅助工具。合理运用提示词(Prompt),不仅能极大提高写作效率,还能辅助生成高质量的学术内容。今天的内容将分享如何利用DeepSeek的提示词技巧,助力论文写作。1.明确写作目标,让AI理解你的需求在使用大模型时,清晰的写作目标至关重要。一个好的提示词应当包括:写作主题、内容范围、格式要求、风格倾向等
- 3D-AFFORDANCELLM: HARNESSING LARGE LANGUAGE MODELS FOR OPEN-VOCABULARY AFFORDANCE DETECTION
UnknownBody
LLMDaily3d语言模型人工智能
摘要3D可及性检测是一个具有挑战性的问题,在各种机器人任务中有着广泛的应用。现有方法通常将检测范式制定为基于标签的语义分割任务。这种范式依赖于预定义的标签,缺乏理解复杂自然语言的能力,导致在开放世界场景中的泛化能力有限。为了解决这些限制,我们将传统的可及性检测范式重新定义为指令推理可及性分割(IRAS)任务。该任务旨在根据查询推理文本输出可及性掩码区域,避免了输入标签的固定类别。相应地,我们提出了
- yolov8的第一次实验报告
算法宇宙
YOLO人工智能计算机视觉
1.实验概述实验名称:占道经营目标检测模型实验目标:提高模型的精确率(Precision)和召回率(Recall),使其接近1。实验日期:[2025-01-16]2.数据集数据集名称:[datasets]数据集大小:[2.68Gb]数据集描述:[数据集主要分两个类别:zdjy_ld,zdjy_gd]注释:占道经营流动,占道经营固定3.模型配置3.1基础配置·模型类型:YOLOv8·预训练模型:YO
- docker
MzKyle
dockerdocker容器运维
Docker介绍Docker是一个开源容器化平台,主要作用是通过将应用程序及其依赖环境打包成轻量级、可移植的容器,实现跨环境的一致性部署与运行。其核心价值包括:环境隔离:容器内的应用与宿主机及其他容器相互隔离,确保运行环境的独立性。标准化交付:通过镜像(Image)封装代码、库和配置,消除“在我机器上能运行”的问题。资源高效:共享宿主机内核,相比虚拟机(VM)更节省内存和计算资源,启动速度更快。跨
- 李开复:AI 2.0 时代的机遇
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
人工智能,深度学习,Transformer,大模型,通用人工智能,AI2.0,应用场景,未来趋势1.背景介绍人工智能(AI)技术近年来发展迅速,从语音识别、图像识别到自然语言处理等领域取得了突破性进展。其中,深度学习作为人工智能的核心技术之一,推动了AI技术的飞速发展。然而,深度学习模型的训练成本高、数据依赖性强、可解释性差等问题仍然制约着AI技术的进一步发展。李开复先生在《AI2.0时代的机遇》
- YOLOv8n-OBB使用C#在windows10进行部署(CPU)
cd_Ww777
YOLO
1.训练YOLOv8-OBB模型1.1数据集制作所用标注工具:X-AnyLabeling下载链接:https://github.com/CVHub520/X-AnyLabeling/releases/download/v2.3.6/X-AnyLabeling-CPU.exe附上两张图片为标注过程中的重要步骤;标注快捷键的使用具体参考官方文档,附图为简单实用的快捷键。https://github.c
- C#学习笔记(3): 调用YOLOv8
playerofIE
c#学习笔记YOLOpython
最近做的项目需要C#编写上位机程序,同时也要使用yolo进行深度学习检测。使用pythonnet调用写好的py文件,C#代码如下:Runtime.PythonDLL="python310.dll";PythonEngine.Initialize();using(Py.GIL()){dynamicsys=Py.Import("sys");dynamictorch=Py.Import("torch")
- DeepSeek + 飞书多维表格:批量生成爆款文案
meisongqing
飞书人工智能DeepSeek
一、操作步骤创建飞书多维表格登录飞书,新建多维表格,建议简化表格结构,保留核心列(如“链接”“关键词”“提示词”等)。设计智能字段:通过“字段类型”添加AI功能列,例如“标题生成”“金句提炼”“概要输出”等,调用DeepSeekR1处理数据。配置DeepSeekR1模型在表格中新增列,选择“DeepSeek-R1”作为字段类型,设置全局提示词(如“生成七言绝句”或“提炼文章核心亮点”)。通过公式引
- Java学习笔记(二十二)
路上阡陌
java学习笔记
1Redis是单线程的那如何处理多个客户端发送的命令Redis虽然是单线程的,但它能够高效地处理多个客户端发送的命令,这主要得益于其内部使用的I/O多路复用技术和事件驱动模型。以下是Redis处理多个客户端命令的详细解释:1.1I/O多路复用技术Redis通过使用I/O多路复用技术,能够同时监听多个客户端连接上的I/O事件。当任何一个客户端连接上有读、写或异常等I/O事件发生时,I/O多路复用机制
- 【认知框架重构】
调皮的芋头
人工智能神经网络
在信息高度互联的今天,寻找信息洼地和利益洼地已成为获取超额收益的核心能力。这两种"洼地"本质上是市场非有效性的具象化表现,其形成机制和挖掘方法值得系统研究。以下从底层逻辑到操作层面的深度分析:一、认知框架重构时空差理论:信息传播存在物理时滞(如跨境政策变化)、认知时滞(专业门槛导致的理解延迟)、传播层级衰减(信息在传递中的失真)熵增对抗模型:市场参与者维持信息优势需要持续负熵输入,当维护成本超过收
- Graphene Federation指南:实现 GraphQL 联邦架构
邴联微
GrapheneFederation指南:实现GraphQL联邦架构graphene-federationFederationsupportforgraphene项目地址:https://gitcode.com/gh_mirrors/gr/graphene-federation项目介绍Graphene-Federation是由CSDN公司开发的InsCodeAI大模型推荐的一个用于Graphene
- 2025 职业革命:AI 重构就业图谱的生存法则
RPAdaren
人工智能重构
一、技术迭代下的产业剧变2025年的春天,全球科技界正在见证人工智能的第三次浪潮。根据麦肯锡最新发布的《全球就业趋势报告》,大模型技术已渗透至83%的行业领域。以医疗行业为例,IBMWatson的诊断准确率已达98.7%,超越资深医师平均水平;金融领域,摩根大通的AI交易系统每日处理超2000万笔订单,效率提升400%。这些数据背后,是AI技术从单一功能向通用智能的跨越式发展。二、职业版图的重构逻
- YOLOv8 的简介 及C#中如何简单应用YOLOv8
码上有潜
YOLOv8YOLO
YOLOv8是YOLO(YouOnlyLookOnce)系列中的最新版本,是一种用于目标检测和图像分割的深度学习模型。YOLO模型以其快速和准确的目标检测性能而著称,广泛应用于实时应用程序中。主要特点高效性:YOLOv8在保持高检测速度的同时,进一步提高了检测精度。端到端训练:可以直接从图像输入端到分类结果输出,简化了训练和部署过程。改进的架构:包括更深的网络结构、更复杂的特征提取方法以及更高效的
- 轻量级模块化前端框架:快速构建强大的Web界面
小杰~
前端框架前端
轻量级模块化前端框架:快速构建强大的Web界面在当今快节奏的Web开发环境中,选择一个高效且灵活的前端框架至关重要。UIkit是一个轻量级的模块化前端框架,旨在帮助开发者快速构建功能强大且响应迅速的Web界面。UIkit提供了丰富的组件和工具,使开发者能够轻松实现现代化的设计效果。无论是构建复杂的用户界面还是简单的网页布局,UIkit都能提供出色的支持。其模块化设计使得开发者可以根据项目需求灵活选
- 问题链的拓扑学重构
由数入道
AI辅助教学拓扑学重构
问题链拓扑学重构目录概念框架与理论基础综合知识图谱(Mermaid图示)核心构成要素与参数解析逻辑链条方法论详解与数学模型4.1根源溯源——分形式5Whys与RCA4.2网络建模——系统动力学与贝叶斯网络4.3维度跃迁——第一性原理与跨模态映射4.4时空折叠——历史回溯与未来推演四维操控模型——知识精髓工具、案例及实践方法注意事项、终止机制与系统自适应未来拓展与研究方向总结与战略价值1.概念框架与
- llama.cpp 和 LLM(大语言模型)
这个懒人
llama语言模型人工智能
llama.cpp和LLM(大语言模型)的介绍,以及两者的关联与区别:1.LLM(LargeLanguageModel,大语言模型)定义:LLM是基于深度学习技术(如Transformer架构)构建的超大参数量的自然语言处理模型。它通过海量文本数据训练,能够生成连贯、语义丰富的文本,完成问答、创作、推理等任务。特点:参数规模大:如GPT-3(1750亿参数)、Llama-65B(650亿参数)等。
- AI在项目中的应用
酒江
人工智能
AI大模型(如GPT-4、BERT、T5等)在各类项目中有广泛的应用,可以极大地提高项目效率、优化流程,并解决许多传统方法难以应对的问题。以下是AI大模型在不同类型项目中的一些具体应用:1.自然语言处理(NLP)文本生成和摘要:AI大模型可以生成高质量的文本内容,自动撰写文章、新闻报道、博客或技术文档,甚至可以进行文献摘要,帮助内容创作者提高效率。情感分析:在客户服务、社交媒体监控或市场研究项目中
- GTP生成UI代码
酒江
ui人工智能深度学习
使用GPT生成UI代码,通常是指利用GPT模型生成前端界面的代码,例如HTML、CSS、JavaScript等。GPT可以帮助开发人员快速创建界面元素的代码,减少手动编写的工作量。下面是一些关键步骤,详细说明如何用GPT生成UI代码:1.明确UI需求和设计界面元素:首先明确需要哪些UI元素。例如:按钮、输入框、表单、表格等。布局:确定页面的布局结构,例如:一栏布局、两栏布局、响应式设计等。交互功能
- 注意力机制+多尺度卷积
一只小小的土拨鼠
解构前沿:文献精读深度学习python人工智能YOLO深度学习
多尺度卷积先提供丰富的特征信息,注意力机制再从中筛选出关键信息,这样结合起来,不仅可以进一步提高模型的识别精度和效率,显著提升模型性能,还可以增强模型的可解释性。MPARN:multi-scalepathattentionresidualnetworkforfaultdiagnosisofrotatingmachines方法:论文介绍了一种用于旋转机械故障诊断的多尺度卷积神经网络结构,称为多尺度路
- 超全!600 个通用大模型Prompt指令
AI Echoes
人工智能
超全!600个ChatGPT通用Prompt指令:1.电子邮件营销提示“我需要一种[电子邮件类型],让我的[理想客户角色]对我的[产品/服务]产生[情感],并说服他们以紧迫感采取[期望的行动]。”“我正在寻找一种[电子邮件类型],它可以直接说明我的[理想客户角色]的需求和痛点,并以紧迫感和强烈的提议说服他们采取[期望的行动]。”“我需要一封[电子邮件类型],向[理想的客户角色]展示我的[产品/服务
- BioDeepAV:一个多模态基准数据集,包含超过1600个深度伪造视频,用于评估深度伪造检测器在面对未知生成器时的性能。
数据集
2024-11-29,由罗马尼亚布加勒斯特大学创建BioDeepAV数据集,它专门设计来评估最先进的深度伪造检测器在面对未见过的深度伪造生成器时的泛化能力,这对于提高检测器的鲁棒性和适应性具有重要意义。一、研究背景:随着生成模型的快速发展,深度伪造内容的逼真度不断提高,人们越来越难以在线检测出被操纵的媒体内容,从而容易受到各种诈骗的欺骗。这不仅对个人隐私构成威胁,也对社会信任和民主构成挑战。目前遇
- llama-factory微调
AI Echoes
深度学习人工智能机器学习deepseek
大模型微调实操--llama-factoryllama-factory环境安装前置准备英伟达显卡驱动更新地址下载NVIDIA官方驱动|NVIDIAcuda下载安装地址CUDAToolkit12.2Downloads|NVIDIADeveloperpytorch下载安装地址PreviousPyTorchVersions|PyTorchllama-factory项目和文档地址https://githu
- Elasticsearch:为推理端点配置分块设置
Elastic 中国社区官方博客
ElasticsearchAIElasticelasticsearch大数据搜索引擎人工智能全文检索数据库ai
推理端点对一次可处理的文本量有限,具体取决于模型的输入容量。分块(Chunking)是指将输入文本拆分成符合这些限制的小块的过程,在将文档摄取到semantic_text字段时会进行分块。分块不仅有助于保持输入文本在可处理范围内,还能使内容更加易读。相比返回一整篇长文档,在搜索结果中提供最相关的文本片段更有价值。每个分块都会包含文本片段以及从中生成的对应嵌入。默认情况下,文档会被拆分为句子(sen
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR