pytorch常用工具小结

  1. getitem 方法
    在类中有__getitem__ 方法,代表当实例对象通过[] 运算符取值时,会调用它的方法__getitem__。
  2. torch.utils.data.DataLoader
    参数:
    (1) dataset: 使用的数据集。
    (2) batch_size:每个batch的数量。
    (3) shuffle: 是否打乱顺序。
    (4) sampler: 采样方法,和shuffle互斥。
    (5) batch_sampler:批量采样,和batch_size、shuffle互斥。
    (7) num_workers: 大于0的数表示通过多个进程来导入数据,可以加快数据导入速度。(8) pin_memory: 将数据拷贝到cuda中。
    (9) timeout: 若超过时间还未读取到数据会报错。
    使用:
    for data in loader:
    	data = data.cuda()
    
    源码:
    class DataLoader(object):
    """
        Data loader. Combines a dataset and a sampler, and provides
        single- or multi-process iterators over the dataset.
    
        Arguments:
            dataset (Dataset): dataset from which to load the data.
            batch_size (int, optional): how many samples per batch to load
                (default: 1).
            shuffle (bool, optional): set to ``True`` to have the data reshuffled
                at every epoch (default: False).
            sampler (Sampler, optional): defines the strategy to draw samples from
                the dataset. If specified, ``shuffle`` must be False.
            batch_sampler (Sampler, optional): like sampler, but returns a batch of
                indices at a time. Mutually exclusive with batch_size, shuffle,
                sampler, and drop_last.
            num_workers (int, optional): how many subprocesses to use for data
                loading. 0 means that the data will be loaded in the main process.
                (default: 0)
            collate_fn (callable, optional): merges a list of samples to form a mini-batch.
            pin_memory (bool, optional): If ``True``, the data loader will copy tensors
                into CUDA pinned memory before returning them.
            drop_last (bool, optional): set to ``True`` to drop the last incomplete batch,
                if the dataset size is not divisible by the batch size. If ``False`` and
                the size of dataset is not divisible by the batch size, then the last batch
                will be smaller. (default: False)
            timeout (numeric, optional): if positive, the timeout value for collecting a batch
                from workers. Should always be non-negative. (default: 0)
            worker_init_fn (callable, optional): If not None, this will be called on each
                worker subprocess with the worker id as input, after seeding and before data
                loading. (default: None)
    """
    
        def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None,
                     num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False,
                     timeout=0, worker_init_fn=None):
            self.dataset = dataset
            self.batch_size = batch_size
            self.num_workers = num_workers
            self.collate_fn = collate_fn
            self.pin_memory = pin_memory
            self.drop_last = drop_last
            self.timeout = timeout
            self.worker_init_fn = worker_init_fn
    
            if timeout < 0:
                raise ValueError('timeout option should be non-negative')
    
            if batch_sampler is not None:
                if batch_size > 1 or shuffle or sampler is not None or drop_last:
                    raise ValueError('batch_sampler is mutually exclusive with '
                                     'batch_size, shuffle, sampler, and drop_last')
    
            if sampler is not None and shuffle:
                raise ValueError('sampler is mutually exclusive with shuffle')
    
            if self.num_workers < 0:
                raise ValueError('num_workers cannot be negative; '
                                 'use num_workers=0 to disable multiprocessing.')
    
            if batch_sampler is None:
                if sampler is None:
                    if shuffle:
                        sampler = RandomSampler(dataset)
                    else:
                        sampler = SequentialSampler(dataset)
                batch_sampler = BatchSampler(sampler, batch_size, drop_last)
    
            self.sampler = sampler
            self.batch_sampler = batch_sampler
    
        def __iter__(self):
            return DataLoaderIter(self)
    
        def __len__(self):
            return len(self.batch_sampler)
    

若有多个数据需要一起使用,重写Data.Dataset方法:

class MyDataSet(Data.Dataset):
  def __init__(self, enc_inputs, dec_inputs, dec_outputs):
    super(MyDataSet, self).__init__()
    self.enc_inputs = enc_inputs
    self.dec_inputs = dec_inputs
    self.dec_outputs = dec_outputs
  
  def __len__(self):
    return self.enc_inputs.shape[0]
  
  def __getitem__(self, idx):
    return self.enc_inputs[idx], self.dec_inputs[idx], self.dec_outputs[idx]

loader = Data.DataLoader(MyDataSet(enc_inputs, dec_inputs, dec_outputs), 2, True)
  1. nn.module
    在构造模型时,要继承nn.module类

    import torch.nn as nn
    import torch.nn.functional as F
     
    class Model(nn.Module):
        def __init__(self):
            # 固定内容
            super(Model, self).__init__()
     
            # 定义相关的函数
            self.conv1 = nn.Conv2d(1, 20, 5)
            self.conv2 = nn.Conv2d(20, 20, 5)
     
        def forward(self, x):
            # 构建模型结构,可以使用F函数内容,其他调用__init__里面的函数
            x = F.relu(self.conv1(x))
     
            # 返回最终的结果
            return F.relu(self.conv2(x))
    
  2. squeeze() 和 unsqueeze():
    unsqueeze(i): 增加第i维
    squeeze(i) : 去掉第i维

  3. 切片b = a[i:j:s]
    从i到j-1步长为s
    所以 b = a[0::2] 代表从0开始到最后,步长为2

  4. expand()
    返回当前张量在某维扩展更大后的张量。扩展(expand)张量不会分配新的内存,只是在存在的张量上创建一个新的视图(view),一个大小(size)等于1的维度扩展到更大的尺寸。

    import torch
    
    >> x = torch.tensor([1, 2, 3])
    >> x.expand(2, 3)
    tensor([[1, 2, 3],
            [1, 2, 3]])
    
    >> x = torch.randn(2, 1, 1, 4)
    >> x.expand(-1, 2, 3, -1)
    torch.Size([2, 2, 3, 4])
    
  5. repeat()
    沿着特定的维度重复这个张量,和expand()不同的是,这个函数拷贝张量的数据。

    import torch
    
    >> x = torch.tensor([1, 2, 3])
    >> x.repeat(3, 2)
    tensor([[1, 2, 3, 1, 2, 3],
            [1, 2, 3, 1, 2, 3],
            [1, 2, 3, 1, 2, 3]])
    
  6. masked_fill_()
    masked_fill_(mask, value)
    掩码操作
    用value填充tensor中与mask中值为1位置相对应的元素。mask的形状必须与要填充的tensor形状一致。

  7. np.triu()
    返回函数的上三角矩阵

    np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
    >>>array([[ 1,  2,  3],
           [ 4,  5,  6],
           [ 0,  8,  9],
           [ 0,  0, 12]])
     
    np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], 1)
    >>>array([[0, 2, 3],
           [0, 0, 6],
           [0, 0, 0],
           [0, 0, 0]])
     
    np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], 0)
    >>>array([[1, 2, 3],
           [0, 5, 6],
           [0, 0, 9],
           [0, 0, 0]])
    
  8. torch.gt()
    torch.gt(a,b)函数比较a中元素大于(这里是严格大于)b中对应元素,大于则为1,不大于则为0,这里a为Tensor,b可以为与a的size相同的Tensor或常数。

>>> import torch
>>> a=torch.randn(2,4)
>>> a
tensor([[-0.5466,  0.9203, -1.3220, -0.7948],
        [ 2.0300,  1.3090, -0.5527, -0.1326]])
>>> b=torch.randn(2,4)
>>> b
tensor([[-0.0160, -0.3129, -1.0287,  0.5962],
        [ 0.3191,  0.7988,  1.4888, -0.3341]])
>>> torch.gt(a,b)            #得到a中比b中元素大的位置
tensor([[0, 1, 0, 0],
        [1, 1, 0, 1]], dtype=torch.uint8)

你可能感兴趣的:(神经网络设计,pytorch)